Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Demand for green energy alternatives to provide stable and reliable energy solutions has increased over the years which has led to the rapid expansion of global markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest amongst these technologies is the Bifacial PV modules, which harvests incident radiation from both sides of the module. The overall power generation can be significantly increased by using these bifacial modules. The purpose of this research is to investigate and maximize the effect of back reflectors, designed to increase the efficiency of the module by utilizing the intercell light passing through the …

Contributors
MARTIN, PEDRO JESSE, Tamizhmani, Govindasamy, Phelan, Patrick, et al.
Created Date
2019

The advancements in additive manufacturing have made it possible to bring life to designs that would otherwise exist only on paper. An excellent example of such designs are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports or no supports at all when 3D printed. These structures exist in stable form in nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry have a growing demand for strong and light structures, which can be solved using TPMS models. In this research we will try …

Contributors
Raja, Faisal, Phelan, Patrick, Bhate, Dhruv, et al.
Created Date
2019

Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work …

Contributors
Abdullahi, Adnan None, Phelan, Patrick, Wang, Robert, et al.
Created Date
2019

In these times of increasing industrialization, there arises a need for effective and energy efficient heat transfer/heat exchange devices. The focus nowadays is on identifying various methods and techniques which can aid the process of developing energy efficient devices. One of the most common heat transfer devices is a heat exchanger. Heat exchangers are an essential commodity to any industry and their efficiency can play an important role in making industries energy efficient and reduce the energy losses in the devices, in turn decreasing energy inputs to run the industry. One of the ways in which we can improve the …

Contributors
Annam, Roshan Sameer, Phelan, Patrick, Rykaczewski, Konrad, et al.
Created Date
2019

When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications. To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when …

Contributors
Kocher, Jordan, Wang, Robert, Phelan, Patrick, et al.
Created Date
2019

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. …

Contributors
Tahir, Sherzad Tahseen, Huang, Huei-Ping, Phelan, Patrick, et al.
Created Date
2019

Soft polymer composites with improved thermal conductivity are needed for the thermal management of electronics. Interfacial thermal boundary resistance, however, prevents the efficient use of many high thermal conductivity fill materials. Magnetic alignment of ferrous fill material enforces percolation of the high thermal conductivity fill, thereby shifting the governing boundary resistance to the particle- particle interfaces and increasing the directional thermal conductivity of the polymer composite. Magnetic alignment maximizes the thermal conductivity while minimizing composite stiffening at a fill fraction of half the maximum packing factor. The directional thermal conductivity of the composite is improved by more than 2-fold. Particle-particle …

Contributors
Ralphs, Matthew, Rykaczewski, Konrad, Wang, Robert Y, et al.
Created Date
2019

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as …

Contributors
Lee, William J, Phelan, Patrick, El Asmar, Mounir, et al.
Created Date
2018

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of …

Contributors
Moslehi, Salim, Reddy, T. Agami, Lackner, Klaus S, et al.
Created Date
2018

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers. This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide …

Contributors
Alshehri, Hassan, Wang, Liping, Phelan, Patrick, et al.
Created Date
2018

Thermodynamic development and balance of plant study is completed for a 30 MW solar thermochemical water splitting process that generates hydrogen gas and electric power. The generalized thermodynamic model includes 23 components and 45 states. Quasi-steady state simulations are completed for design point system sizing, annual performance analysis and sensitivity analysis. Detailed consideration is given to water splitting reaction kinetics with governing equations generalized for use with any redox-active metal oxide material. Specific results for Ceria illustrate particle reduction in two solar receivers for target oxygen partial pressure of 10 Pa and particle temperature of 1773 K at a design …

Contributors
Budama, Vishnu Kumar, Johnson, Nathan, Stechel, Ellen, et al.
Created Date
2018

The concept of this thesis came up as a part of the efforts being devoted around the world to reduce energy consumption, CO2 emissions, global warming and ozone layer depletion. In the United States, HVAC units in residential buildings consumed about 350 billion kWh in 2017 [1],[2]. Although HVAC manufacturers are investing in new technologies and more efficient products to reduce energy consumption, there is still room for further improvement. One way of reducing cooling and heating energy in residential buildings is by allowing the centralized HVAC unit to supply conditioned air to only occupied portions of the house by …

Contributors
Fairag, Amr, Phelan, Patrick, Bocanegra, Luis, et al.
Created Date
2018

In this study, two novel sorbents (zeolite 4A and sodium polyacrylate) are tested to investigate if utilizing ultrasonic acoustic energy could decrease the amount of time and overall energy required to regenerate these materials for use in cooling applications. To do this, an experiment was designed employing a cartridge heater and a piezoelectric element to be simultaneously providing heat and acoustic power to a custom designed desorption bed while measuring the bed mass and sorbent temperature at various locations. The results prove to be promising showing that early in the desorption process ultrasound may expedite the desorption process in zeolite …

Contributors
Bertrand, Weston Kyle, Phelan, Patrick, Bocanegra, Luis, et al.
Created Date
2018

In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or heating technologies to meet this need. The concept of thermal energy storage (TES), as noted by many authors, is a promising way to rectify indoor temperature fluctuations. Due to its high energy density and the use of latent energy, Phase Change Materials (PCMs) are an efficient choice to use as …

Contributors
Prem Anand Jayaprabha, Jyothis Anand, Phelan, Patrick, Wang, Robert, et al.
Created Date
2018

Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional …

Contributors
Chang, Jui-Yung, Wang, Liping, Phelan, Patrick, et al.
Created Date
2017

One the major problems of this modern industrialized world is its dependence on fossil fuels for its energy needs. Burning of fossils fuels generates green-house gases which have adverse effects on global climate contributing to global warming. According to Environmental Protection Agency (EPA), carbon dioxide makes up 80 percent of green-house gases emitted in USA. Electrochemical reduction of carbon dioxide is an approach which uses CO2 emissions to produce other useful hydrocarbons which can be used in many ways. In this study, primary focus was on optimizing the operating conditions, determining the better catalyst material, and analyzing the reaction products …

Contributors
Mudunur, Santosh shekar, Kannan, Arunachala, Phelan, Patrick, et al.
Created Date
2017

Photovoltaic modules degrade in the field. This thesis aims to answer two questions: 1. Do photovoltaic modules degrade linearly or not? 2. Do soiled modules operate at lower temperatures than clean modules? Answers to these questions are provided in part 1 and part 2 of this thesis respectively. Part 1: Linearity determination in degradation: The electricity output from PV power plants degrades every year. Generally, a system’s life is considered to last for 20-25 years and rate of degradation is commonly assumed as 1% per year. PV degradation can be found out using Performance Ratio (PR), Performance Index (PI) and …

Contributors
Patankar, Adit, Tamizhmani, Govindasamy, Wang, Liping, et al.
Created Date
2017

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one …

Contributors
Sun, Xiaoda, Rykaczewski, Konrad, Lin, Jerry, et al.
Created Date
2017

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact …

Contributors
Damle, Viraj Gangadhar, Rykaczewski, Konrad, Phelan, Patrick, et al.
Created Date
2017

This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air …

Contributors
Kasat, Harshal Kasat, Kannan, Arunachalana, Phelan, Patrick, et al.
Created Date
2016