Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Resource Type
  • Masters Thesis
Date Range
2010 2019


Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text. As part of …

Contributors
Bhattacharjee, Aurgho, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2019

Question answering is a challenging problem and a long term goal of Artificial Intelligence. There are many approaches proposed to solve this problem, including end to end machine learning systems, Information Retrieval based approaches and Textual Entailment. Despite being popular, these methods find difficulty in solving problems that require multi level reasoning and combining independent pieces of knowledge, for example, a question like "What adaptation is necessary in intertidal ecosystems but not in reef ecosystems?'', requires the system to consider qualities, behaviour or features of an organism living in an intertidal ecosystem and compare with that of an organism in …

Contributors
Batni, Vaishnavi, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

In this thesis, I present two new datasets and a modification to the existing models in the form of a novel attention mechanism for Natural Language Inference (NLI). The new datasets have been carefully synthesized from various existing corpora released for different tasks. The task of NLI is to determine the possibility of a sentence referred to as “Hypothesis” being true given that another sentence referred to as “Premise” is true. In other words, the task is to identify whether the “Premise” entails, contradicts or remains neutral with regards to the “Hypothesis”. NLI is a precursor to solving many Natural …

Contributors
Shrivastava, Ishan, Baral, Chitta, Anwar, Saadat, et al.
Created Date
2019

Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree of ease with which the virtual digital assistants such as Google Assistant and Amazon Alexa can be integrated into your application. These assistants make use of a Natural Language Understanding (NLU) system which acts as an interface to translate unstructured natural language data into a structured form. Such an NLU …

Contributors
Garg, Prashant, Baral, Chitta, Kumar, Hemanth, et al.
Created Date
2018

Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task dependent. The downstream task can range from understanding one modality in the presence of information from other modalities, to that of translating input from one modality to another. In this thesis the utility of multimodal representation learning for understanding one modality vis-à-vis Image Understanding for Visual Reasoning given corresponding information …

Contributors
Saha, Rudra, Yang, Yezhou, Singh, Maneesh Kumar, et al.
Created Date
2018

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called …

Contributors
Pradhan, Anish, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2018

LPMLN is a recent probabilistic logic programming language which combines both Answer Set Programming (ASP) and Markov Logic. It is a proper extension of Answer Set programs which allows for reasoning about uncertainty using weighted rules under the stable model semantics with a weight scheme that is adopted from Markov Logic. LPMLN has been shown to be related to several formalisms from the knowledge representation (KR) side such as ASP and P-Log, and the statistical relational learning (SRL) side such as Markov Logic Networks (MLN), Problog and Pearl’s causal models (PCM). Formalisms like ASP, P-Log, Problog, MLN, PCM have all …

Contributors
Talsania, Samidh, Lee, Joohyung, Lee, Joohyung, et al.
Created Date
2017

In this thesis, I propose a new technique of Aligning English sentence words with its Semantic Representation using Inductive Logic Programming(ILP). My work focusses on Abstract Meaning Representation(AMR). AMR is a semantic formalism to English natural language. It encodes meaning of a sentence in a rooted graph. This representation has gained attention for its simplicity and expressive power. An AMR Aligner aligns words in a sentence to nodes(concepts) in its AMR graph. As AMR annotation has no explicit alignment with words in English sentence, automatic alignment becomes a requirement for training AMR parsers. The aligner in this work comprises of …

Contributors
Agarwal, Shubham, Baral, Chitta, Li, Baoxin, et al.
Created Date
2017

In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification. Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company …

Contributors
Rath, Trideep, Baral, Chitta, Li, Baoxin, et al.
Created Date
2017

Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints …

Contributors
Yang, Zhun, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2017

Due to vast resources brought by social media services, social data mining has received increasing attention in recent years. The availability of sheer amounts of user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information in social networks could provide another rich source in deriving implicit information for social data mining. However, the vast majority of existing studies overwhelmingly focus on positive links between users while negative links are also prevailing in real- world social networks such as distrust relations in Epinions and foe links in Slashdot. Though recent studies …

Contributors
Cheng, Kewei, Liu, Huan, Tong, Hanghang, et al.
Created Date
2017

For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method …

Contributors
Magge Ranganatha, Arjun, Syrotiuk, Violet R, Baral, Chitta, et al.
Created Date
2016

There have been extensive research in how news and twitter feeds can affect the outcome of a given stock. However, a majority of this research has studied the short term effects of sentiment with a given stock price. Within this research, I studied the long-term effects of a given stock price using fundamental analysis techniques. Within this research, I collected both sentiment data and fundamental data for Apple Inc., Microsoft Corp., and Peabody Energy Corp. Using a neural network algorithm, I found that sentiment does have an effect on the annual growth of these companies but the fundamentals are more …

Contributors
Reeves, Tyler Joseph, Davulcu, Hasan, Baral, Chitta, et al.
Created Date
2016

Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as Answer Set Programming (ASP), to high-level action languages, such as C+ and BC. These languages show a lot of promise over many traditional approaches as they allow a developer to automate many tasks which require reasoning within dynamic environments in a succinct and elaboration tolerant manner. However, despite their strengths, they are still insufficient for modeling many systems, especially those …

Contributors
Babb, Joseph Allyn, Lee, Joohyung, Lee, Yann-Hang, et al.
Created Date
2014

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right …

Contributors
Budukh, Tejas Ulhas, Baral, Chitta, Vanlehn, Kurt, et al.
Created Date
2013

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a …

Contributors
Kumbhare, Kanchan R., Baral, Chitta, Ye, Jieping, et al.
Created Date
2013

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined …

Contributors
Srinivas, Shashank, Fainekos, Georgios, Baral, Chitta, et al.
Created Date
2013

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be …

Contributors
Lumpkin, Barry Thomas, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2012

Action language C+ is a formalism for describing properties of actions, which is based on nonmonotonic causal logic. The definite fragment of C+ is implemented in the Causal Calculator (CCalc), which is based on the reduction of nonmonotonic causal logic to propositional logic. This thesis describes the language of CCalc in terms of answer set programming (ASP), based on the translation of nonmonotonic causal logic to formulas under the stable model semantics. I designed a standard library which describes the constructs of the input language of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input …

Contributors
Casolary, Michael, Lee, Joohyung, Ahn, Gail-Joon, et al.
Created Date
2011

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty …

Contributors
Alvarez Gonzalez, Marcos, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2010