Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Mime Type
Date Range
2011 2019


Imagine you live in a place without any storm water or wastewater systems! Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over 80% of global wastewater is released into the environment without adequate treatment. Wastewater collection and treatment systems in the Kingdom of Saudi Arabia (KSA) covers about 49% of urban areas; about 25% of treated wastewater is used for landscape and crop irrigation (Ministry of Environment Water and Agriculture [MEWA], 2017). …

Contributors
Alfaisal, Faisal Mohammed, Mays, Larry W., Mascaro, Giuseppe, et al.
Created Date
2019

Flooding is a critical issue around the world, and the absence of comprehension of watershed hydrologic reaction results in lack of lead-time for flood forecasting and expensive harm to property and life. It happens when water flows due to extreme rainfall storm, dam breach or snowmelt exceeds the capacity of river system reservoirs and channels. The objective of this research was to develop a methodology for determining a time series operation for releases through control gates of river-reservoir systems during flooding events in a real-time using one- and/or two-dimensional modeling of flows through river-reservoir systems. The optimization-simulation methodology interfaces several …

Contributors
Albo-Salih, Hasan Hadi Kraidi, Mays, Larry W, Fox, Peter, et al.
Created Date
2019

In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users …

Contributors
Ahmed, Ahmed Abdulrazzaq, Mays, Larry W, Fox, Peter, et al.
Created Date
2019

The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy. This research focuses on the water supply system (WSS) facet …

Contributors
Khatavkar, Puneet Nandkumar, Mays, Larry W, Vittal, Vijay, et al.
Created Date
2019

One of the two objectives of this dissertation is an investigation into the possible correlation between rainfall events and increased levels of E. coli and Mycobacterium using an existing data set. The literature states that levels of microbial concentrations do increase after rainfall events, but there are no studies to indicate this correlation applies in any Arizona water systems. The data analyzed for the bacterial concentrations project suggested the possibility of a correlation along one river but it is not conclusive to state that any correlation exists between rainfall events and the microbial concentration for many other sites included in …

Contributors
Buell, Andrew, Fox, Peter, Abbaszadegan, Morteza, et al.
Created Date
2018

C.C. Cragin Reservoir’s location in the Coconino National Forest, Arizona makes it prone to wild fire. This study focused on the potential impacts of such a wild fire on the reservoir’s annual thermal stratification cycle impacts and water quality. The annual thermal stratification cycle impacted the reservoir’s water quality by increasing hypolimnion concentrations of magnesium, iron, turbidity, and specific ultraviolet absorbance (SUVA) values, as well as resulting in the hypolimnion having decreased dissolved oxygen concentrations during stratified months. The scarification process did not affect the dissolved organic carbon (DOC) concentrations in the reservoir or the total/dissolved nitrogen and phosphorous concentrations. …

Contributors
Flatebo, Theodore, Westerhoff, Paul K, Fox, Peter, et al.
Created Date
2018

Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to remove Cs from water; however, they are not efficient at removing Cs when present at low concentrations of about 10 parts-per-billion (ppb), typical of concentrations found in the radioactive contaminated sites. The objective of this study was to develop an innovative and simple method to remove Cs+ present at low …

Contributors
Hakim Elahi, Sepideh, Conroy-Ben, Otakuye, Abbaszadegan, Morteza, et al.
Created Date
2018

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better …

Contributors
Russell, Jazmine B, Neuer, Susanne, Fox, Peter, et al.
Created Date
2018

Quagga mussels are an aquatic invasive species capable of causing economic and ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the Salt River system and the Verde River system of Arizona, both had no quagga mussel detections for 8 years. The main factor thought to deter quagga mussels was the stratification of the two watersheds during the summer, resulting in high temperatures in the epilimnion and low dissolved oxygen in the hypolimnion. In 2015, Canyon Lake, a reservoir of the Salt River watershed, tested positive for quagga mussel veligers. In this study, I used Landsat 7 …

Contributors
Lau, Theresa, Fox, Peter, Neuer, Susanne, et al.
Created Date
2018

Legionella pneumophila is a waterborne pathogen that causes Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. In a culture-based technique, Legionella is detected using buffered charcoal-yeast extract (BCYE) agar supplemented with L-cysteine, Iron salt and antibiotics. These supplements provide essential and complex nutrient requirements and help in the suppression of non-target bacteria in Legionella analysis. Legionella occurs naturally in freshwater environments and for their detection; a sample is plated on solid agar media and then incubated for several days. There are many challenges in the detection of Legionella in environmental waters and the built environments. A common …

Contributors
Aloraini, Saleh, Abbaszadegan, Morteza, Fox, Peter, et al.
Created Date
2018

Specific inorganic and organic pollutants in water (As(V), Cr(VI), THMs, and hardness) cause health concerns or aesthetic problems. The goal of this dissertation is to demonstrate novel approaches to improve the performance of point of use and municipal activated carbon processes to provide safe and reliable water to the public at distributed centralized locations. Template Assisted Crystallization system would adjust saturation index (SI) value of TAC treated water to zero when SI value of influent water was in the range at 0.08~0.3. However, the reduction in SI when SI values were higher (e.g. 0.7~1.3) was similar to the reduction at …

Contributors
Lee, Heuidae, Westerhoff, Paul, Fox, Peter, et al.
Created Date
2018

Adenoviruses cause gastrointestinal illnesses and have been listed on the U.S. EPA’s Contaminant Candidate Lists (CCL). They are highly resistant to ultraviolet (UV) inactivation. Advanced oxidation processes (AOPs) are known to improve inactivation of microorganisms and simultaneously oxidize organics. The bacteriophage P22 was selected as a surrogate for adenoviruses due to their physical and genetic similarities. The main objective of this study was to compare the synergic disinfection potential of titanium dioxide (TiO2) or peracetic acid (PAA) with UV for viruses and bacteria in water. Both bench-scale and pilot-scale evaluation was done. A bench-scale collimated beam was included to evaluate …

Contributors
Nikougoftar Zarif, Majid, Abbaszadegan, Morteza, Fox, Peter, et al.
Created Date
2017

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids …

Contributors
Fischer, Natalia, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2017

This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22 bacteriophage, and a visual tracer and draw comparisons and/or conclusions. A constructed tank was packed with an approximate 3,700 cubic inches (in3) of a fine grained, homogeneous, chemically inert sand which allowed for a controlled system. Sampling ports were located at 5, 15, 25, and 25 vertical inches from the …

Contributors
Acosta, Jazlyn Cauren, Abbaszadegan, Morteza, Dahlen, Paul, et al.
Created Date
2017

Chloride solutions have historically been used to stabilize roads and to prevent dust; however, very little work has been done on investigating the soil stabilizing benefits from interactions between salt solutions and different soil types. The primary goal of this research was to analyze the feasibility of utilizing a salt waste product as an economically and environmentally responsible means of dust control and/or soil stabilization. Specifically, this study documents an investigation leading to the understanding of how the addition of saline based waste products, when using a soil stabilizer, modifies the strength behavior of soils. The scope of work included …

Contributors
Fakih, Ali, Kaloush, Kamil Elias, Zapata, Claudia E, et al.
Created Date
2017

Reverse osmosis (RO) membranes are considered the most effective treatment to remove salt from water. Specifically, thin film composite (TFC) membranes are considered the gold standard for RO. Despite TFC membranes good performance, there are drawbacks to consider including: permeability-selectivity tradeoff, chlorine damage, and biofouling potential. In order to counter these drawbacks, polyamide matrixes were embedded with various nanomaterials called mixed matrix membranes (MMMs) or thin film nanocomposites (TFNs). This research investigates the use of graphene oxide (GO) and reduced graphene oxide (RGO) into the polyamide matrix of a TFC membrane. GO and RGO have the potential to alter the …

Contributors
Inurria, Adam, Perreault, Francois, Fox, Peter, et al.
Created Date
2017

Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic acid (PAA) upstream of an ultraviolet (UV) irradiation reactor. Two studies were conducted, one in pilot-scale field conditions and another under laboratory conditions. A pilot-scale NeoTech UV reactor (rated for 375 GPM) was used in the pilot study, where a smaller version of this unit was used in the laboratory study (20 to 35 GPM). The pilot study analyzed coliform disinfection and also monitored water quality parameters including UV transmittance …

Contributors
Cooper, Samantha L., Abbaszadegan, Morteza, Alum, Absar, et al.
Created Date
2017

One solution to mitigating global climate change is using cyanobacteria or single-celled algae (collectively microalgae) to replace petroleum-based fuels and products, thereby reducing the net release of carbon dioxide. This work develops and evaluates a mechanistic kinetic model for light-dependent microalgal growth. Light interacts with microalgae in a variety of positive and negative ways that are captured by the model: light intensity (LI) attenuates through a microalgal culture, light absorption provides the energy and electron flows that drive photosynthesis, microalgae pool absorbed light energy, microalgae acclimate to different LI conditions, too-high LI causes damage to the cells’ photosystems, and sharp …

Contributors
Straka, Levi, Rittmann, Bruce E, Fox, Peter, et al.
Created Date
2017

Carbon dioxide (CO2) is one of the most dangerous greenhouse gas. Its concentration in the atmosphere has increased to very high levels since the industrial revolution. This continues to be a threat due to increasing energy demands. 60% of the worlds global emissions come from automobiles and other such moving sources. Hence, to stay within safe limits, it is extremely important to curb current emissions and remove those which have already been emitted. Out of many available technologies, one such technology is the moisture swing based air capture technology that makes use of resin material that absorbs CO2 when it …

Contributors
Chopra, Vinuta, Lackner, Klaus S, Fox, Peter, et al.
Created Date
2016

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP) model has been developed for the minimum cost design of bioretention basins with dry wells. The model developed simultaneously determines the peak stormwater inflow from watershed parameters and optimizes the size of the basin and the number and depth of dry wells based on infiltration, evapotranspiration (ET), and dry well …

Contributors
Lacy, Mason Lacy, Mays, Larry W, Fox, Peter, et al.
Created Date
2016