Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Navigation through natural environments requires continuous sensory guidance. In addition to coordinated muscle contractions of the limbs that are controlled by spinal cord, equilibrium, body weight bearing and transfer, and avoidance of obstacles all have to happen while locomotion is in progress and these are controlled by the supraspinal centers. For successful locomotion, animals require visual and somatosensory information. Even though a number of supraspinal centers receive both in varying degrees, processing this information at different levels of the central nervous system, especially their contribution to visuo-motor and sensory-motor integration during locomotion is poorly understood. This dissertation investigates the patterns …

Contributors
Nilaweera, Wijitha Udayalal, Beloozerova, Irina N, Smith, Brian H, et al.
Created Date
2016

Locomotion in natural environments requires coordinated movements from multiple body parts, and precise adaptations when changes in the environment occur. The contributions of the neurons of the motor cortex underlying these behaviors are poorly understood, and especially little is known about how such contributions may differ based on the anatomical and physiological characteristics of neurons. To elucidate the contributions of motor cortical subpopulations to movements, the activity of motor cortical neurons, muscle activity, and kinematics were studied in the cat during a variety of locomotion tasks requiring accurate foot placement, including some tasks involving both expected and unexpected perturbations of …

Contributors
Stout, Eric, Beloozerova, Irina N, Dounskaia, Natalia, et al.
Created Date
2015

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks …

Contributors
Shibata, Daisuke, Santello, Marco, Dounskaia, Natalia, et al.
Created Date
2014