Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization. The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in …

Contributors
Fu, Fanrui, Sadleir, Rosalind, Kodibagkar, Vikram, et al.
Created Date
2019

Recent new experiments showed that wide-field imaging at millimeter scale is capable of recording hundreds of neurons in behaving mice brain. Monitoring hundreds of individual neurons at a high frame rate provides a promising tool for discovering spatiotemporal features of large neural networks. However, processing the massive data sets is impossible without automated procedures. Thus, this thesis aims at developing a new tool to automatically segment and track individual neuron cells. The new method used in this study employs two major ideas including feature extraction based on power spectral density of single neuron temporal activity and clustering tree to separate …

Contributors
Wu, Ruofan, Si, Jennie, Sadleir, Rosalind, et al.
Created Date
2016