Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2019


ABSTRACT Auditory hallucinations are a characteristic symptom of schizophrenia. Research has documented that the auditory cortex is metabolically activated when this process occurs, and that imbalances in the dopaminergic transmission in the striatum contribute to its physiopathology. Most animal models have focused the effort on pharmacological approaches like non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists to produce activation of the auditory cortex, or dopamine antagonists to alleviate it. I hypothesize that these perceptual phenomena can be explained by an imbalance activation of spiny projecting neurons in the striatal pathways, whereby supersensitive postsynaptic D2-like receptor, signaling in the posterior caudatoputamen generates activation of …

Contributors
Parga Becerra, Alejandro, Neisewander, Janet, Hammer, Ronald, et al.
Created Date
2014

Neuroimaging has appeared in the courtroom as a type of `evidence' to support claims about whether or not criminals should be held accountable for their crimes. Yet the ability to abstract notions of culpability and criminal behavior with confidence from these imagines is unclear. As there remains much to be discovered in the relationship between personal responsibility, criminal behavior, and neurological abnormalities, questions have been raised toward neuroimaging as an appropriate means to validate these claims. This project explores the limits and legitimacy of neuroimaging as a means of understanding behavior and culpability in determining appropriate criminal sentencing. It highlights …

Contributors
Taddeo, Sarah, Robert, Jason S, Marchant, Gary, et al.
Created Date
2014

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While …

Contributors
Lehrer, Nicole, Rikakis, Thanassis, Rikakis, Thanassis, et al.
Created Date
2014

During attempted fixation, the eyes are not still but continue to produce so called "fixational eye movements", which include microsaccades, drift, and tremor. Microsaccades are thought to help prevent and restore vision loss during fixation, and to correct fixation errors, but how they contribute to these functions remains a matter of debate. This dissertation presents the results of four experiments conducted to address current controversies concerning the role of microsaccades in visibility and oculomotor control. The first two experiments set out to correlate microsaccade production with the visibility of foveal and peripheral targets of varied spatial frequencies, during attempted fixation. …

Contributors
Costela, Francisco, Crook, Sharon M, Martinez-Conde, Susana, et al.
Created Date
2014

Voluntary exercise has been shown to generate post exercise improvements in executive function within the attention-deficit hyperactivity disorder (ADHD) population. Research is limited on the link between exercise and motor function in this population. Whether or not changes in executive and motor function are observed under assisted exercise conditions is unknown. This study examined the effect of a six-week cycling intervention on executive and motor-function responses in young adult females with ADHD. Participants were randomized to either a voluntary exercise (VE) or an assisted exercise (AE) group. Both groups performed 30 minute cycling sessions, three times per week, at either …

Contributors
Birchfield, Natasha Renee, Ringenbach, Shannon, Lee, Chong, et al.
Created Date
2014

Cell morphology and the distribution of voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of spatiotemporal synaptic input patterns. Although many studies have provided insight into the computational properties arising from neuronal structure as well as from channel kinetics, no comprehensive theory exists which explains how the interaction of these features shapes neuronal excitability. In this study computational models based on the identified Drosophila motoneuron (MN) 5 are developed to investigate the role of voltage gated ion channels, the impact of their densities and the effects of structural features. …

Contributors
Berger, Sandra Daniela, Crook, Sharon, Baer, Steven, et al.
Created Date
2014

Patients with schizophrenia have impaired cognitive flexibility, as evidenced by behaviors of perseveration. Cognitive impairments may be due to dysregulation of glutamate and/or loss of neuronal plasticity in the medial prefrontal cortex (mPFC). The purpose of these studies was to examine the effects of mGluR5 positive allosteric modulators (PAMs) alone and in combination with the NMDAR antagonist MK-801, a pharmacological model of schizophrenia. An operant-based cognitive set-shifting task was utilized to assess cognitive flexibility, in vivo microdialysis procedures to measure extracellular glutamate levels in the mPFC, and diolistic labeling to assess the effects on dendritic spine density and morphology in …

Contributors
LaCrosse, Amber, Olive, Michael, Olive, Michael, et al.
Created Date
2014

Following a traumatic brain injury (TBI) 5-50% of patients will develop post traumatic epilepsy (PTE). Pediatric patients are most susceptible with the highest incidence of PTE. Currently, we cannot prevent the development of PTE and knowledge of basic mechanisms are unknown. This has led to several shortcomings to the treatment of PTE, one of which is the use of anticonvulsant medication to the population of TBI patients that are not likely to develop PTE. The complication of identifying the two populations has been hindered by the ability to find a marker to the pathogenesis of PTE. The central hypothesis of …

Contributors
Nichols, Joshua, Anderson, Trent, Neisewander, Janet, et al.
Created Date
2014

Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in the AL is the functional analog to epinephrine in the OB. Blockade of OA receptors in the AL blocks plasticity induced changes in behavior. I have now begun to test specific hypotheses related to how this biogenic amine might be involved in plasticity in neural circuits within the AL. OA …

Contributors
Protas, Danielle Tatiana, Smith, Brian H, Neisewander, Janet, et al.
Created Date
2014

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks …

Contributors
Shibata, Daisuke, Santello, Marco, Dounskaia, Natalia, et al.
Created Date
2014

Cells live in complex environments and must be able to adapt to environmental changes in order to survive. The ability of a cell to survive and thrive in a changing environment depends largely on its ability to receive and respond to extracellular signals. Initiating with receptors, signal transduction cascades begin translating extracellular signals into intracellular messages. Such signaling cascades are responsible for the regulation of cellular metabolism, cell growth, cell movement, transcription, translation, proliferation and differentiation. This dissertation seeks to dissect and examine critical signaling pathways involved in the regulation of proliferation in neural stem cells (Chapter 2) and the …

Contributors
Kusne, Yael N., Sanai, Nader, Neisewander, Janet, et al.
Created Date
2014

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the …

Contributors
Mao, Hongwei, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to …

Contributors
Yuan, Yuan, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

The basal ganglia are four sub-cortical nuclei associated with motor control and reward learning. They are part of numerous larger mostly segregated loops where the basal ganglia receive inputs from specific regions of cortex. Converging on these inputs are dopaminergic neurons that alter their firing based on received and/or predicted rewarding outcomes of a behavior. The basal ganglia's output feeds through the thalamus back to the areas of the cortex where the loop originated. Understanding the dynamic interactions between the various parts of these loops is critical to understanding the basal ganglia's role in motor control and reward based learning. …

Contributors
Baldwin, Nathan A., Helms Tillery, Stephen I, Castañeda, Edward, et al.
Created Date
2014

The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits that are easily identified or tracked. Indeed it has been shown that patients with enduring symptoms have difficulty describing their problems; therefore, there is an urgent need for a sensitive measure of brain activity that corresponds with higher order cognitive processing. The development of a neurophysiological metric that maps to …

Contributors
Utianski, Rene Lynn, Liss, Julie M, Berisha, Visar, et al.
Created Date
2014

Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and then lifted the object with three fingers (3-DoF). The subjects were divided into two groups--one group performed the task wearing a glove (to reduce tactile sensibility) upon the switch to 3-DoF (glove group), while the other group did …

Contributors
Gaw, Nathan Benjamin, Helms Tillery, Stephen, Santello, Marco, et al.
Created Date
2014

During the past five decades neurosurgery has made great progress, with marked improvements in patient outcomes. These noticeable improvements of morbidity and mortality can be attributed to the advances in innovative technologies used in neurosurgery. Cutting-edge technologies are essential in most neurosurgical procedures, and there is no doubt that neurosurgery has become heavily technology dependent. With the introduction of any new modalities, surgeons must adapt, train, and become thoroughly familiar with the capabilities and the extent of application of these new innovations. Within the past decade, endoscopy has become more widely used in neurosurgery, and this newly adopted technology is …

Contributors
Elhadi, Ali M., Preul, Mark C, Towe, Bruce, et al.
Created Date
2014

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing …

Contributors
Georges, Joseph, Feuerstein, Burt G, Smith, Brian H, et al.
Created Date
2014

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following …

Contributors
Anand, Sindhu, Muthuswamy, Jitendran, Tillery, Stephen H, et al.
Created Date
2013

The brain is a fundamental target of the stress response that promotes adaptation and survival but the repeated activation of the stress response has the potential alter cognition, emotion, and motivation, key functions of the limbic system. Three structures of the limbic system in particular, the hippocampus, medial prefrontal cortex (mPFC), and amygdala, are of special interest due to documented structural changes and their implication in post-traumatic stress disorder (PTSD). One of many notable chronic stress-induced changes include dendritic arbor restructuring, which reflect plasticity patterns in parallel with the direction of alterations observed in functional imaging studies in PTSD patients. …

Contributors
Hoffman, Ann, Conrad, Cheryl D, Olive, M. Foster, et al.
Created Date
2013