Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue $\lambda_1$ of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of $\lambda_1$ are known …

Contributors
Jones, Scott, Cochran, Douglas, Berisha, Visar, et al.
Created Date
2019

Network analysis is a key conceptual orientation and analytical tool in the social sciences that emphasizes the embeddedness of individual behavior within a larger web of social relations. The network approach is used to better understand the cause and consequence of social interactions which cannot be treated as independent. The relational nature of network data and models, however, amplify the methodological concerns associated with inaccurate or missing data. This dissertation addresses such concerns via three projects. As a motivating substantive example, Project 1 examines factors associated with the selection of interaction partners by students at a large urban high school …

Contributors
Bates, Jordan Taylor, Maroulis, Spiro J, Kang, Yun, et al.
Created Date
2019

The main objective of mathematical modeling is to connect mathematics with other scientific fields. Developing predictable models help to understand the behavior of biological systems. By testing models, one can relate mathematics and real-world experiments. To validate predictions numerically, one has to compare them with experimental data sets. Mathematical modeling can be split into two groups: microscopic and macroscopic models. Microscopic models described the motion of so-called agents (e.g. cells, ants) that interact with their surrounding neighbors. The interactions among these agents form at a large scale some special structures such as flocking and swarming. One of the key questions …

Contributors
Jamous, Sara Sami, Motsch, Sebastien, Armbruster, Dieter, et al.
Created Date
2019

This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical steady-state transverse magnetization (M) from single-shot magnetic resonance imaging (MRI) scans. Sparse regularization on an approximation to the edge map is used to solve the associated inverse problem. Several studies are carried out for both one- and two-dimensional test problems, including comparisons to the first order approximation method, as well …

Contributors
Jesse, Aaron Mitchel, Platte, Rodrigo, Gelb, Anne, et al.
Created Date
2019

I focus on algorithms that generate good sampling points for function approximation. In 1D, it is well known that polynomial interpolation using equispaced points is unstable. On the other hand, using Chebyshev nodes provides both stable and highly accurate points for polynomial interpolation. In higher dimensional complex regions, optimal sampling points are not known explicitly. This work presents robust algorithms that find good sampling points in complex regions for polynomial interpolation, least-squares, and radial basis function (RBF) methods. The quality of these nodes is measured using the Lebesgue constant. I will also consider optimal sampling for constrained optimization, used to …

Contributors
Liu, Tony, Platte, Rodrigo B, Renaut, Rosemary, et al.
Created Date
2019

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded …

Contributors
Kshitij, Abhinav, Dahm, Werner J.A., Herrmann, Marcus, et al.
Created Date
2019

Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering. The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers are first introduced via prescription, distinguishing it from other drugs in which the most common path to abuse begins with experimentation. I develop and analyze two mathematical models of Vicodin use and abuse, considering only those patients with an initial Vicodin prescription. Through adjoint sensitivity analysis, I show that focusing …

Contributors
Caldwell, Wendy K, Wirkus, Stephen, Asphaug, Erik, et al.
Created Date
2019

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is …

Contributors
Yalim, Jason, Welfert, Bruno D., Lopez, Juan M., et al.
Created Date
2019

This dissertation examines six different models in the field of econophysics using interacting particle systems as the basis of exploration. In each model examined, the underlying structure is a graph G = (V , E ), where each x ∈ V represents an individual who is characterized by the number of coins in her possession at time t. At each time step t, an edge (x, y) ∈ E is chosen at random, resulting in an exchange of coins between individuals x and y according to the rules of the model. Random variables ξt, and ξt(x) keep track of the …

Contributors
Reed, Stephanie J, Lanchier, Nicolas, Smith, Hal, et al.
Created Date
2019

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence properties of each in the limit as $t \rightarrow \infty$. Specifically, I provide sufficient conditions for the convergence of both of the models, and conduct numerical experiments to study the resulting solutions. Dissertation/Thesis

Contributors
Theisen, Ryan, Motsch, Sebastien, Lanchier, Nicholas, et al.
Created Date
2018

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA). Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the …

Contributors
Knutson, Brent, Tang, Wenbo, Calhoun, Ronald, et al.
Created Date
2018

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which …

Contributors
Ramachandran, Ragesh Kumar, Berman, Spring M, Mignolet, Marc, et al.
Created Date
2018

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva. A mathematical model is developed for the spread of rabies in a spatially distributed fox …

Contributors
Alanazi, Khalaf Matar, Thieme, Horst R., Jackiewicz, Zdzislaw, et al.
Created Date
2018

This thesis consists of three projects employing complexity economics methods to explore firm dynamics. The first is the Firm Ecosystem Model, which addresses the institutional conditions of capital access and entrenched competitive advantage. Larger firms will be more competitive than smaller firms due to efficiencies of scale, but the persistence of larger firms is also supported institutionally through mechanisms such as tax policy, capital access mechanisms and industry-favorable legislation. At the same time, evidence suggests that small firms innovate more than larger firms, and an aggressive firm-as-value perspective incentivizes early investment in new firms in an attempt to capture that …

Contributors
Applegate, J M, Janssen, Marcus A, Hoetker, Glenn, et al.
Created Date
2018

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered. The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external …

Contributors
Rodriguez Messan, Marisabel, Kang, Yun, Castillo-Chavez, Carlos, et al.
Created Date
2018

Earth-system models describe the interacting components of the climate system and technological systems that affect society, such as communication infrastructures. Data assimilation addresses the challenge of state specification by incorporating system observations into the model estimates. In this research, a particular data assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is applied to the ionosphere, which is a domain of practical interest due to its effects on infrastructures that depend on satellite communication and remote sensing. This dissertation consists of three main studies that propose strategies to improve space- weather specification during ionospheric extreme events, but are generally …

Contributors
Durazo, Juan Alberto, Kostelich, Eric J., Mahalov, Alex, et al.
Created Date
2018

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause. Motivated by the fact that understanding the dynamics of …

Contributors
Okuneye, Kamaldeen Olatunde, Gumel, Abba B, Kuang, Yang, et al.
Created Date
2018

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain …

Contributors
Buscaglia, Robert, Kamarianakis, Yiannis, Armbruster, Dieter, et al.
Created Date
2018

This dissertation explores the impact of environmental dependent risk on disease dynamics within a Lagrangian modeling perspective; where the identity (defined by place of residency) of individuals is preserved throughout the epidemic process. In Chapter Three, the impact of individuals who refuse to be vaccinated is explored. MMR vaccination and birth rate data from the State of California are used to determine the impact of the anti-vaccine movement on the dynamics of growth of the anti-vaccine sub-population. Dissertation results suggest that under realistic California social dynamics scenarios, it is not possible to revert the influence of anti-vaccine contagion. In Chapter …

Contributors
Moreno Martinez, Victor Manuel, Castillo-Chavez, Carlos, Kang, Yun, et al.
Created Date
2018

In this dissertation the potential impact of some social, cultural and economic factors on Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is addressed. A mathematical model, calibrated with data from the 2014 West African outbreak, is used to show the dynamics of EVD control under various quarantine and isolation effectiveness regimes. It is shown that in order to make a difference it must reach a high proportion of the infected population. The effect of EVD-dead bodies has been incorporated in …

Contributors
Espinoza, Baltazar, Castillo-Chávez, Carlos, Kang, Yun, et al.
Created Date
2018