Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of Ge. The epitaxial Ge films produced in this work incorporate donor atoms at concentrations above the thermodynamic equilibrium limits. The donors are nearly fully activated, and led to films with lowest resistivity values thus far reported. Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy …

Contributors
Senaratne, Charutha Lasitha, Kouvetakis, John, Chizmeshya, Andrew, et al.
Created Date
2016

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light emitting devices (OLED). The most commonly used transparent electrodes in optoelectronic applications is indium tin oxide (ITO) due to its low resistivity (~ 10−4 Ω-cm) and high transmittance (~ 80 %). However, the limited supply of indium and the growing demand for ITO make the resulting fabrication costs prohibitive for …

Contributors
Dhar, Aritra, Alford, Terry L, Petuskey, William, et al.
Created Date
2015

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, …

Contributors
Frey, Sarah Elizabeth, Herckes, Pierre, Fraser, Matthew P, et al.
Created Date
2014

We studied the relationship between the polarizability and the molecular conductance that arises in the response of a molecule to an external electric field. To illustrate the plausibility of the idea, we used Simmons' tunneling model, which describes image charge and dielectric effects on electron transport through a barrier. In such a model, the barrier height depends on the dielectric constant of the electrode-molecule-electrode junction, which in turn can be approximately expressed in terms of the molecular polarizability via the classical Clausius-Mossotti relation. In addition to using the tunneling model, the validity of the relationships between the molecular polarizability and …

Contributors
Vatan Meidanshahi, Reza, Mujica, Vladimiro, Chizmeshya, Andrew, et al.
Created Date
2014

This thesis describes the fabrication of several new classes of Ge1-x-ySixSny materials with the required compositions and crystal quality to engineer the band gaps above and below that of elemental Ge (0.8 eV) in the near IR. The work initially focused on Ge1-x-ySixSny (1-5% Sn, 4-20% Si) materials grown on Ge(100) via gas-source epitaxy of Ge4H10, Si4H10 and SnD4. Both intrinsic and doped layers were produced with defect-free microstructure and viable thickness, allowing the fabrication of high-performance photodetectors. These exhibited low ideality factors, state-of-the-art dark current densities and adjustable absorption edges between 0.87 and 1.03 eV, indicating that the band …

Contributors
Xu, Chi, Kouvetakis, John, Menendez, Jose, et al.
Created Date
2013

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether …

Contributors
Ansari, Younes, Angell, Charles A, Richert, Ranko, et al.
Created Date
2013

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation …

Contributors
Grzybowski, Gordon J., Kouvetakis, John, Chizmeshya, Andrew, et al.
Created Date
2013

Group IV alloy films exhibit the ability to tune both band structure and lattice parameters and have recently attracted attention for their potential applications in Si-photonics and photovoltaics. In this work, several new approaches to produce these alloys directly on Si(100) and Ge(100) wafers are developed. For photovoltaics, use of Ge-buffered Si(100) wafers as a low cost platform for epitaxy of In1-xGaxAs layers was explored. The results indicate that this approach has promise for transitioning from bulk Ge platforms to virtual substrates for a significant cost reduction. The electrical and optical properties of Ge and Ge1-ySny layers produced using several …

Contributors
Beeler, Richard Todd, Kouvetakis, John, Menéndez, José, et al.
Created Date
2012