Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials. This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar …

Contributors
Hashemi Amiri, Seyed Ebrahim, Ning, Cun-Zheng, Petuskey, William, et al.
Created Date
2018

The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study …

Contributors
Das, Sayantan, Alford, Terry L, Petuskey, William, et al.
Created Date
2015

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light emitting devices (OLED). The most commonly used transparent electrodes in optoelectronic applications is indium tin oxide (ITO) due to its low resistivity (~ 10−4 Ω-cm) and high transmittance (~ 80 %). However, the limited supply of indium and the growing demand for ITO make the resulting fabrication costs prohibitive for …

Contributors
Dhar, Aritra, Alford, Terry L, Petuskey, William, et al.
Created Date
2015

Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic insulation and waste immobilization, they are always prepared in monolithic form. The primary aim of this study is to produce new nanostructured materials from the geopolymerization process, including porous monoliths and powders. In view of the current interest in porous geopolymers for non-traditional applications, it is becoming increasingly important to develop synthetic …

Contributors
Medpelli, Dinesh, Seo, Dong-Kyun, Herckes, Pierre, et al.
Created Date
2015

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (fÉmax = 404 nm) for pure silver to 4.1 x 107 M-1 cm-1 (fÉmax = 511 …

Contributors
Starr, Christopher Allen, Buttry, Daniel A, Petuskey, William, et al.
Created Date
2014

Mass spectrometric analysis requires that atoms from the sample be ionized in the gas phase. Secondary ion mass spectrometry achieves this by sputtering samples with an energetic primary ion beam. Several investigations of the sputtering and ionization process have been conducted. Oxygen is commonly used in secondary ion mass spectrometry (SIMS) to increase ion yields, but also can complicate the interpretation of SIMS analyses. An 18O implant in silicon has been used to quantify the oxygen concentration at the surface of sputtered silicon in order to study the dependence on oxygen of several sputtering and depth profile phenomena. The ion …

Contributors
Sobers Jr., Richard Carlisle, Williams, Peter, Hayes, Mark, et al.
Created Date
2012

Nanoporous crystalline oxides with high porosity and large surface areas are promising in catalysis, clean energy technologies and environmental applications all which require efficient chemical reactions at solid-solid, solid-liquid, and/or solid-gas interfaces. Achieving the balance between open porosity and structural stability is an ongoing challenge when synthesizing such porous materials. Increasing porosity while maintaining an open porous network usually comes at the cost of fragility, as seen for example in ultra low density, highly random porous aerogels. It has become increasingly important to develop synthetic techniques that produce materials with these desired properties while utilizing low cost precursors and increasing …

Contributors
Ladd, Danielle Marie, Seo, Don, Haussermann, Ulrich, et al.
Created Date
2012

Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied …

Contributors
Mesgar, Milad, Seo, Dong-Kuyn, Petuskey, William, et al.
Created Date
2012