Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Modern semiconductor technologies have been dominated by group-IV materials and III-V analogues. The development of hybrid derivatives combining appropriate members of these systems has been of interest for the purpose of extending the optoelectronic capabilities of the state-of-the-art. Early work on pseudo-binary (III-V)-IV alloys, described with the general formula (III-V)1-x(IV2)x, showed limited progress due to phase segregation, auto-doping and compositional inhomogeneities. Recently, new techniques were introduced for synthesizing new classes of (III-V)-IV hybrid materials using reactions of V(IVH3)3 molecules [V = N, P, As and IV = Si, Ge] with group-III elements (B, Al, Ga, In). The reactions produce (III-V)-IV3 …

Contributors
Sims, Patrick, Kouvetakis, John, Chizmeshya, Andrew V. G., et al.
Created Date
2017

Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric minerals and organic carbon. Microbial iron oxidation (MIO) was detected from pH 2 – 5.5. In systems with abundant Fe (II), dissolved oxygen controls the presence of MIO. Rates generally increase with increased Fe(II) concentrations, but rate constants are not significantly altered by additions of Fe(II). MIRC was detected in …

Contributors
St Clair, Brian, Shock, Everett L, Anbar, Ariel, et al.
Created Date
2017

In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of droplets in the microarray, a 100 μm thick oil layer (dodecane) was used to cover the chip surface. The interaction between BSA (Bovine serum albumin) and Anti-BSA was used to evaluate the capability of IMPDS. The alignment variability of printing, stability of droplets array and quantification of protein-protein interactions based …

Contributors
Xiao, Feng, Tao, Nongjian, Borges, Chad, et al.
Created Date
2017

Serial crystallography (SX) is a relatively new structural biology technique that collects X-ray diffraction data from microcrystals via femtosecond pulses produced by an X-ray free electron laser (X-FEL) or by synchrotron radiation, allowing for challenging protein structures to be solved from microcrystals at room temperature. Because of the youth of this technique, method development is necessary for it to achieve its full potential. Most serial crystallography experiments have relied on delivering sample in the mother liquor focused into a stream by compressed gas. This liquid stream moves at a fast rate, meaning that most of the valuable sample is wasted. …

Contributors
Conrad, Chelsie Elea, Fromme, Petra, Ros, Alexandra, et al.
Created Date
2016

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular …

Contributors
Nickerson, Stella Day, Dai, Lenore L, Yu, Hongyu, et al.
Created Date
2016

Over the last few decades, homogeneous molybdenum catalysis has been a center of interest to inorganic, organic, and organometallic chemists. Interestingly, most of the important advancements in molybdenum chemistry such as non-classical dihydrogen coordination, dinitrogen reduction, olefin metathesis, and water reduction utilize diverse oxidation states of the metal. However, employment of redox non-innocent ligands to tune the stability and reactivity of such catalysts have been overlooked. With this in mind, the Trovitch group has developed a series of novel bis(imino)pyridine (or pyridine diimine, PDI) and diimine (DI) ligands that have coordinating phosphine or amine arms to exert coordination flexibility to …

Contributors
Pal, Raja, Trovitch, Ryan J, Buttry, Daniel, et al.
Created Date
2016

Hydrothermal environments are important locales for carbon cycling on Earth and elsewhere in the Universe. Below its maximum temperature (~73 °C), microbial photosynthesis drives primary productivity in terrestrial hydrothermal ecosystems, which is thought to be performed by bacterial phototrophs in alkaline systems and eukaryotic algae in acidic systems, yet has received little attention at pH values intermediate to these extremes. Sequencing of 16S and 18S rRNA genes was performed at 12 hot springs with pH values 2.9-5.6 and revealed that cyanobacteria affiliated with the genus Chlorogloeopsis and algae of the order Cyanidiales coexisted at 10 of the sites. Cyanobacteria were …

Contributors
Fecteau, Kristopher, Shock, Everett L, Gould, Ian R, et al.
Created Date
2016

Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much …

Contributors
Klein, Iolanda Santana, Angell, Charles A, Buttry, Daniel A, et al.
Created Date
2016

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) …

Contributors
Tejeda Ferrari, Marely Estefania, Moore, Ana, Mujica, Vladimiro, et al.
Created Date
2016

There is a fundamental attractiveness about harnessing renewable energy in an age when sustainability is an ethical norm. Lithium ion batteries and hydrogen fuels are considered the most promising energy source instead of fossil fuels. This work describes the investigation of new cathode materials and devices architectures for lithium ion batteries, and photocatalysts for their usage in water splitting and waste water treatment. LiCoO2 and LiNi1/3Mn1/3Co1/3O2 were exfoliated into nanosheets using electrochemical oxidation followed by intercalation of tetraethylammonium cations. The nanosheets were purified using dialysis and electrophoresis. The nanosheets were successfully restacked into functional cathode materials with microwave hydrothermal assistance, …

Contributors
Cheng, Qian, Chan, Candace Kay, Sieradzki, Karl, et al.
Created Date
2016