Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2017


In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in …

Contributors
Tadayon, Ramin, Panchanathan, Sethuraman, McDaniel, Troy, et al.
Created Date
2017

Machine learning methodologies are widely used in almost all aspects of software engineering. An effective machine learning model requires large amounts of data to achieve high accuracy. The data used for classification is mostly labeled, which is difficult to obtain. The dataset requires both high costs and effort to accurately label the data into different classes. With abundance of data, it becomes necessary that all the data should be labeled for its proper utilization and this work focuses on reducing the labeling effort for large dataset. The thesis presents a comparison of different classifiers performance to test if small set …

Contributors
Batra, Salil, Femiani, John, Amresh, Ashish, et al.
Created Date
2017

Subdivision surfaces have gained more and more traction since it became the standard surface representation in the movie industry for many years. And Catmull-Clark subdivision scheme is the most popular one for handling polygonal meshes. After its introduction, Catmull-Clark surfaces have been extended to several eminent ways, including the handling of boundaries, infinitely sharp creases, semi-sharp creases, and hierarchically defined detail. For ray tracing of subdivision surfaces, a common way is to construct spatial bounding volume hierarchies on top of input control mesh. However, a high-level refined subdivision surface not only requires a substantial amount of memory storage, but also …

Contributors
Ke, Shujian, Amresh, Ashish, Femiani, John, et al.
Created Date
2017

Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside in favor of increasing the educational value of the game. The other issue is that the code base of the game is mostly or completely unusable for any other games as the game mechanics are too strongly connected to the educational content being taught. This means that the mechanics are …

Contributors
Baron, Tyler John, Amresh, Ashish, Nelson, Brian C, et al.
Created Date
2017

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically …

Contributors
Bahl, Neeraj Dharampal, Bansal, Ajay, Amresh, Ashish, et al.
Created Date
2017

Image processing has changed the way we store, view and share images. One important component of sharing images over the networks is image compression. Lossy image compression techniques compromise the quality of images to reduce their size. To ensure that the distortion of images due to image compression is not highly detectable by humans, the perceived quality of an image needs to be maintained over a certain threshold. Determining this threshold is best done using human subjects, but that is impractical in real-world scenarios. As a solution to this issue, image quality assessment (IQA) algorithms are used to automatically compute …

Contributors
Gupta, Ayush, Sohoni, Sohum, Amresh, Ashish, et al.
Created Date
2017

Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from OpenGL ES used for rendering in web applications. It is relatively new and has been rapidly evolving, this has resulted in it supporting a subset of rendering features normally supported by desktop applications. In this thesis, the research is focusing on evaluating Curved PN-Triangles tessellation with Screen Space Ambient Occlusion …

Contributors
Li, Chenyang, Amresh, Ashish, Wang, Yalin, et al.
Created Date
2017

In the last decade, the number of people who own a mobile phone or portable electronic communication device has grown exponentially. Recent advances in smartphone technology have enabled mobile devices to provide applications (“mHealth apps”) to support delivering interventions, tracking health treatments, or involving a healthcare team into the treatment process and symptom monitoring. Although the popularity of mHealth apps is increasing, few lessons have been shared regarding user experience design and evaluation for such innovations as they relate to clinical outcomes. Studies assessing usability for mobile apps primarily rely on survey instruments. Though surveys are effective in determining user …

Contributors
Patwardhan, Mandar, Gary, Kevin A, Pina, Armando, et al.
Created Date
2016

Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery. However, the appearances of these things vary based on many things including the time that the image is captured, the sensor settings, processing done to rectify the image, and the geographical and cultural context of the region captured by the image. This thesis explores the use of deep convolutional neural …

Contributors
Uba, Nagesh Kumar, Femiani, John, Razdan, Anshuman, et al.
Created Date
2016

Lecture videos are a widely used resource for learning. A simple way to create videos is to record live lectures, but these videos end up being lengthy, include long pauses and repetitive words making the viewing experience time consuming. While pauses are useful in live learning environments where students take notes, I question the value of pauses in video lectures. Techniques and algorithms that can shorten such videos can have a huge impact in saving students’ time and reducing storage space. I study this problem of shortening videos by removing long pauses and adaptively modifying the playback rate by emphasizing …

Contributors
Purushothama Shenoy, Sreenivas, Amresh, Ashish, Femiani, John, et al.
Created Date
2016