Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2012 2019


Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement. To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model. This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. …

Contributors
Srivastava, Gaurav, Seo, Jae-Sun, Chakrabarti, Chaitali, et al.
Created Date
2018

Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Chakrabarti, Chaitali, et al.
Created Date
2018

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures. First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution …

Contributors
Lee, Shin-Ying, Wu, Carole-Jean, Chakrabarti, Chaitali, et al.
Created Date
2017

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes. Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo …

Contributors
Li, Jinjin, Karam, Lina, Chakrabarti, Chaitali, et al.
Created Date
2017

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging. The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions …

Contributors
Shah, Mohit, Spanias, Andreas, Chakrabarti, Chaitali, et al.
Created Date
2015

Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both economic and environmental reasons. This dissertation develops a cyber-physical multi-tier server and workload management architecture which operates at the local and the global (geo-distributed) data center level. We devise optimization frameworks for each tier to optimize energy consumption, energy cost and carbon footprint of the data centers. The proposed solutions are aware of various energy management tradeoffs that manifest due …

Contributors
Abbasi, Zahra, Gupta, Sandeep K. S., Chakrabarti, Chaitali, et al.
Created Date
2014

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements. This work presents StreamWorks, …

Contributors
Panda, Amrit Kumar, Chatha, Karam S., Wu, Carole-Jean, et al.
Created Date
2014

We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale to hundreds and thousands of cores. In addition, caches and coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die area. Therefore, a more scalable architecture is needed for manycore architectures. Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable …

Contributors
Bai, Ke, Shrivastava, Aviral, Chatha, Karamvir, et al.
Created Date
2014

In recent years, we have observed the prevalence of stream applications in many embedded domains. Stream programs distinguish themselves from traditional sequential programming languages through well defined independent actors, explicit data communication, and stable code/data access patterns. In order to achieve high performance and low power, scratch pad memory (SPM) has been introduced in today's embedded multicore processors. Current design frameworks for developing stream applications on SPM enhanced embedded architectures typically do not include a compiler that can perform automatic partitioning, mapping and scheduling under limited on-chip SPM capacities and memory access delays. Consequently, many designs are implemented manually, which …

Contributors
Che, Weijia, Chatha, Karam Singh, Chatha, Karam Singh, et al.
Created Date
2012