Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


Machine learning tutorials often employ an application and runtime specific solution for a given problem in which users are expected to have a broad understanding of data analysis and software programming. This thesis focuses on designing and implementing a new, hands-on approach to teaching machine learning by streamlining the process of generating Inertial Movement Unit (IMU) data from multirotor flight sessions, training a linear classifier, and applying said classifier to solve Multi-rotor Activity Recognition (MAR) problems in an online lab setting. MAR labs leverage cloud computing and data storage technologies to host a versatile environment capable of logging, orchestrating, and …

Contributors
De La Rosa, Matthew Lee, Chen, Yinong, Collofello, James, et al.
Created Date
2018

Affect signals what humans care about and is involved in rational decision-making and action selection. Many technologies may be improved by the capability to recognize human affect and to respond adaptively by appropriately modifying their operation. This capability, named affect-driven self-adaptation, benefits systems as diverse as learning environments, healthcare applications, and video games, and indeed has the potential to improve systems that interact intimately with users across all sectors of society. The main challenge is that existing approaches to advancing affect-driven self-adaptive systems typically limit their applicability by supporting the creation of one-of-a-kind systems with hard-wired affect recognition and self-adaptation …

Contributors
Gonzalez Sanchez, Javier, Burleson, Winslow, Collofello, James, et al.
Created Date
2016

Software Managed Manycore (SMM) architectures - in which each core has only a scratch pad memory (instead of caches), - are a promising solution for scaling memory hierarchy to hundreds of cores. However, in these architectures, the code and data of the tasks mapped to the cores must be explicitly managed in the software by the compiler. State-of-the-art compiler techniques for SMM architectures require inter-procedural information and analysis. A call graph of the program does not have enough information, and Global CFG, i.e., combining all the control flow graphs of the program has too much information, and becomes too big. …

Contributors
Holton, Bryce Harvard, Shrivastava, Aviral, Collofello, James, et al.
Created Date
2014

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role …

Contributors
Gupta, Poonam, Ahn, Gail-Joon, Collofello, James, et al.
Created Date
2014

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of …

Contributors
Verdicchio, Michael Paul, Kim, Seungchan, Baral, Chitta, et al.
Created Date
2013

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this …

Contributors
Carey, Maurice, Colbourn, Charles, Collofello, James, et al.
Created Date
2013

Laboratory automation systems have seen a lot of technological advances in recent times. As a result, the software that is written for them are becoming increasingly sophisticated. Existing software architectures and standards are targeted to a wider domain of software development and need to be customized in order to use them for developing software for laboratory automation systems. This thesis proposes an architecture that is based on existing software architectural paradigms and is specifically tailored to developing software for a laboratory automation system. The architecture is based on fairly autonomous software components that can be distributed across multiple computers. The …

Contributors
Kuppuswamy, Venkataramanan, Meldrum, Deirdre, Collofello, James, et al.
Created Date
2012

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the …

Contributors
Buell, Kevin, Collofello, James, Davulcu, Hasan, et al.
Created Date
2012

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale …

Contributors
Billionniere, Elodie V., Collofello, James, Ganesh, Tirupalavanam, et al.
Created Date
2011