Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2017


Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less …

Contributors
Gholami, Soroosh, Sarjoughian, Hessam S, Fainekos, Georgios, et al.
Created Date
2017

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to the important role in virtually every aspect of human life, it is crucial to make sure that a CPS works properly before its deployment. However, formal verification of CPS is a computationally hard problem. Therefore, lightweight verification methods such as testing and monitoring of the CPS are considered in the industry. The formal representation of the CPS requirements is a challenging task. In addition, checking the system outputs with respect to requirements is a computationally complex problem. In this dissertation, these problems for the verification of CPS are …

Contributors
Dokhanchi, Adel, Fainekos, Georgios, Lee, Yann-Hang, et al.
Created Date
2017

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The …

Contributors
Hoxha, Bardh, Fainekos, Georgios, Sarjoughian, Hessam, et al.
Created Date
2017

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are …

Contributors
Loney, Nikhil, Lee, Joohyung, Fainekos, Georgios, et al.
Created Date
2017

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have …

Contributors
Kim, Yooseong, Shrivastava, Aviral, Broman, David, et al.
Created Date
2017

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process. Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have …

Contributors
Das, Arun, Sen, Arunabha, Xue, Guoliang, et al.
Created Date
2016

Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection …

Contributors
Campbell, Joseph, Fainekos, Georgios, Ben Amor, Heni, et al.
Created Date
2016

Robots are becoming an important part of our life and industry. Although a lot of robot control interfaces have been developed to simplify the control method and improve user experience, users still cannot control robots comfortably. With the improvements of the robot functions, the requirements of universality and ease of use of robot control interfaces are also increasing. This research introduces a graphical interface for Linear Temporal Logic (LTL) specifications for mobile robots. It is a sketch based interface built on the Android platform which makes the LTL control interface more friendly to non-expert users. By predefining a set of …

Contributors
Wei, Wei, Fainekos, Georgios, Amor, Hani Ben, et al.
Created Date
2016

A Cyber Physical System consists of a computer monitoring and controlling physical processes usually in a feedback loop. These systems are increasingly becoming part of our daily life ranging from smart buildings to medical devices to automobiles. The controller comprises discrete software which may be operating in one of the many possible operating modes and interacting with a changing physical environment in a feedback loop. The systems with such a mix of discrete and continuous dynamics are usually termed as hybrid systems. In general, these systems are safety critical, hence their correct operation must be verified. Model Based Design (MBD) …

Contributors
Thekkalore Srinivasa, Rahul, Fainekos, Georgios, Mayyas, Abdel Ra’ouf, et al.
Created Date
2016

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption. To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process. Dissertation/Thesis

Contributors
Jonas, Michael, Gaffar, Ashraf, Fainekos, Georgios, et al.
Created Date
2016