Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the …

Contributors
MIshra, Aditya Prasad, Kambhampati, Subbarao, Chiou, Erin, et al.
Created Date
2019

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning. However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with …

Contributors
Wang, Yi, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2019

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just …

Contributors
Gelfond, Gregory, Baral, Chitta, Kambhampati, Subbarao, et al.
Created Date
2018

Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago. Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social …

Contributors
Morstatter, Fred, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2017

Micro-blogging platforms like Twitter have become some of the most popular sites for people to share and express their views and opinions about public events like debates, sports events or other news articles. These social updates by people complement the written news articles or transcripts of events in giving the popular public opinion about these events. So it would be useful to annotate the transcript with tweets. The technical challenge is to align the tweets with the correct segment of the transcript. ET-LDA by Hu et al [9] addresses this issue by modeling the whole process with an LDA-based graphical …

Contributors
Acharya, Anirudh, Kambhampati, Subbarao, Davulcu, Hasan, et al.
Created Date
2015

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data. This big data has brought about countless opportunities for analyzing human behavior at scale. However, is this data enough? Unfortunately, the data available at the individual-level is limited for most users. This limited individual-level data is often referred to as thin data. Hence, researchers face a big-data paradox, where this big-data is …

Contributors
Zafarani, Reza, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2015

Browsing Twitter users, or browsers, often find it increasingly cumbersome to attach meaning to tweets that are displayed on their timeline as they follow more and more users or pages. The tweets being browsed are created by Twitter users called originators, and are of some significance to the browser who has chosen to subscribe to the tweets from the originator by following the originator. Although, hashtags are used to tag tweets in an effort to attach context to the tweets, many tweets do not have a hashtag. Such tweets are called orphan tweets and they adversely affect the experience of …

Contributors
Mallapura Umamaheshwar, Tejas, Kambhampati, Subbarao, Liu, Huan, et al.
Created Date
2015

Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, …

Contributors
Hu, Xia, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2015

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable - in fact, the de facto - virtual town halls for people to discover, report, share and communicate with others about various types of events. These events range from widely-known events such as the U.S Presidential debate to smaller scale, local events such as a local Halloween block party. During these events, we often witness a large amount of commentary contributed by crowds on social media. This burst of social media responses surges with the "second-screen" behavior and greatly enriches the user experience when interacting with the …

Contributors
Hu, Yuheng, Kambhampati, Subbarao, Horvitz, Eric, et al.
Created Date
2014

Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focusing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the possibility of using behavior traits intrinsic to users of sarcasm to detect sarcastic tweets. First, I theorize the core forms of sarcasm using findings from the psychological and behavioral sciences, and some observations on Twitter users. Then, I develop computational …

Contributors
Rajadesingan, Ashwin, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2014