Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning. However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with …

Contributors
Wang, Yi, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2019

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called …

Contributors
Pradhan, Anish, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2018

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to …

Contributors
Aditya, Somak, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2018

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just …

Contributors
Gelfond, Gregory, Baral, Chitta, Kambhampati, Subbarao, et al.
Created Date
2018

The Web is one of the most exciting and dynamic areas of development in today’s technology. However, with such activity, innovation, and ubiquity have come a set of new challenges for digital forensic examiners, making their jobs even more difficult. For examiners to become as effective with evidence from the Web as they currently are with more traditional evidence, they need (1) methods that guide them to know how to approach this new type of evidence and (2) tools that accommodate web environments’ unique characteristics. In this dissertation, I present my research to alleviate the difficulties forensic examiners currently face …

Contributors
Mabey, Michael Kent, Ahn, Gail-Joon, Doupé, Adam, et al.
Created Date
2017

LPMLN is a recent probabilistic logic programming language which combines both Answer Set Programming (ASP) and Markov Logic. It is a proper extension of Answer Set programs which allows for reasoning about uncertainty using weighted rules under the stable model semantics with a weight scheme that is adopted from Markov Logic. LPMLN has been shown to be related to several formalisms from the knowledge representation (KR) side such as ASP and P-Log, and the statistical relational learning (SRL) side such as Markov Logic Networks (MLN), Problog and Pearl’s causal models (PCM). Formalisms like ASP, P-Log, Problog, MLN, PCM have all …

Contributors
Talsania, Samidh, Lee, Joohyung, Lee, Joohyung, et al.
Created Date
2017

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are …

Contributors
Loney, Nikhil, Lee, Joohyung, Fainekos, Georgios, et al.
Created Date
2017

Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints …

Contributors
Yang, Zhun, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2017

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs can generate an immense amount of data - easily reaching terabytes worth of information. Despite increasing the vast amount of data that is currently generated, traditional analytical methods have not increased the overall success rate of identifying active chemical compounds that eventually become novel therapeutic drugs. Moreover, multispectral imaging has …

Contributors
Trevino, Robert, Liu, Huan, Lamkin, Thomas J, et al.
Created Date
2016

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions. In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found. Because these answers must be defined based on something, it is better …

Contributors
Vo, Nguyen Ha, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2015