Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2018


Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. This thesis presents a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for temporal dimensionality reduction and a novel temporal clustering layer for cluster assignment. Then it jointly optimizes the clustering objective and the dimensionality reduction objective. Based on requirement and application, the temporal clustering layer can be customized with any temporal similarity metric. Several similarity metrics and state-of-the-art algorithms are considered and …

Contributors
Madiraju, NaveenSai, Liang, Jianming, Wang, Yalin, et al.
Created Date
2018

While techniques for reading DNA in some capacity has been possible for decades, the ability to accurately edit genomes at scale has remained elusive. Novel techniques have been introduced recently to aid in the writing of DNA sequences. While writing DNA is more accessible, it still remains expensive, justifying the increased interest in in silico predictions of cell behavior. In order to accurately predict the behavior of cells it is necessary to extensively model the cell environment, including gene-to-gene interactions as completely as possible. Significant algorithmic advances have been made for identifying these interactions, but despite these improvements current techniques …

Contributors
Faucon, Philippe Christophe, Liu, Huan, Wang, Xiao, et al.
Created Date
2017

Alzheimer’s disease (AD), is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. It is the cause of 60% to 70% of cases of dementia. There is growing interest in identifying brain image biomarkers that help evaluate AD risk pre-symptomatically. High-dimensional non-linear pattern classification methods have been applied to structural magnetic resonance images (MRI’s) and used to discriminate between clinical groups in Alzheimers progression. Using Fluorodeoxyglucose (FDG) positron emission tomography (PET) as the pre- ferred imaging modality, this thesis develops two independent machine learning based patch analysis methods and uses them to perform six binary classification …

Contributors
Srivastava, Anant, Wang, Yalin, Bansal, Ajay, et al.
Created Date
2017

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been …

Contributors
Singh, Shibani, Wang, Yalin, Li, Baoxin, et al.
Created Date
2017

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems. In this dissertation, I carry …

Contributors
Li, Qingyang, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2017

Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from OpenGL ES used for rendering in web applications. It is relatively new and has been rapidly evolving, this has resulted in it supporting a subset of rendering features normally supported by desktop applications. In this thesis, the research is focusing on evaluating Curved PN-Triangles tessellation with Screen Space Ambient Occlusion …

Contributors
Li, Chenyang, Amresh, Ashish, Wang, Yalin, et al.
Created Date
2017

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects. Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort …

Contributors
Chen, Lin, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2016

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing …

Contributors
Shi, Jie, Wang, Yalin, Caselli, Richard, et al.
Created Date
2016

Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of …

Contributors
Zhao, Xinlin, Ye, Jieping, Wang, Yalin, et al.
Created Date
2016

The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample …

Contributors
Li, Bolun, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2015