Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Reverse engineering is critical to reasoning about how a system behaves. While complete access to a system inherently allows for perfect analysis, partial access is inherently uncertain. This is the case foran individual agent in a distributed system. Inductive Reverse Engineering (IRE) enables analysis under such circumstances. IRE does this by producing program spaces consistent with individual input-output examples for a given domain-specific language. Then, IRE intersects those program spaces to produce a generalized program consistent with all examples. IRE, an easy to use framework, allows this domain-specific language to be specified in the form of Theorist s, which produce …

Contributors
Nelson, Connor David, Doupé, Adam, Shoshitaishvili, Yan, et al.
Created Date
2019

Researchers and practitioners have widely studied road network traffic data in different areas such as urban planning, traffic prediction and spatial-temporal databases. For instance, researchers use such data to evaluate the impact of road network changes. Unfortunately, collecting large-scale high-quality urban traffic data requires tremendous efforts because participating vehicles must install Global Positioning System(GPS) receivers and administrators must continuously monitor these devices. There have been some urban traffic simulators trying to generate such data with different features. However, they suffer from two critical issues (1) Scalability: most of them only offer single-machine solution which is not adequate to produce large-scale …

Contributors
Fu, Zishan, Sarwat, Mohamed, Pedrielli, Giulia, et al.
Created Date
2019

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students. This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students …

Contributors
Day, Melissa, Gonzalez-Sanchez, Javier, Bansal, Ajay, et al.
Created Date
2019

For systems having computers as a significant component, it becomes a critical task to identify the potential threats that the users of the system can present, while being both inside and outside the system. One of the most important factors that differentiate an insider from an outsider is the fact that the insider being a part of the system, owns privileges that enable him/her access to the resources and processes of the system through valid capabilities. An insider with malicious intent can potentially be more damaging compared to outsiders. The above differences help to understand the notion and scope of …

Contributors
Nolastname, Sharad, Bazzi, Rida, Sen, Arunabha, et al.
Created Date
2019

Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose …

Contributors
Chhabra, Sachin, Li, Baoxin, Venkateswara, Hemanth, et al.
Created Date
2019

There are many applications where the truth is unknown. The truth values are guessed by different sources. The values of different properties can be obtained from various sources. These will lead to the disagreement in sources. An important task is to obtain the truth from these sometimes contradictory sources. In the extension of computing the truth, the reliability of sources needs to be computed. There are models which compute the precision values. In those earlier models Banerjee et al. (2005) Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and Wu (2011) Zhao and Han (2012) …

Contributors
Jain, Karan, Xue, Guoliang, Sen, Arunabha, et al.
Created Date
2019

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions. I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS …

Contributors
Khodadadeh, Roozbeh, Sankar, Lalitha, Xue, Guoliang, et al.
Created Date
2019

Capturing the information in an image into a natural language sentence is considered a difficult problem to be solved by computers. Image captioning involves not just detecting objects from images but understanding the interactions between the objects to be translated into relevant captions. So, expertise in the fields of computer vision paired with natural language processing are supposed to be crucial for this purpose. The sequence to sequence modelling strategy of deep neural networks is the traditional approach to generate a sequential list of words which are combined to represent the image. But these models suffer from the problem of …

Contributors
Katpally, Harshitha, Bansal, Ajay, Acuna, Ruben, et al.
Created Date
2019

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature. The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development. UVLabel provides both a functional product, and …

Contributors
La Place, Cecilia, Bansal, Ajay, Jacobs, Daniel, et al.
Created Date
2019

Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the …

Contributors
MIshra, Aditya Prasad, Kambhampati, Subbarao, Chiou, Erin, et al.
Created Date
2019

Knowledge Representation (KR) is one of the prominent approaches to Artificial Intelligence (AI) that is concerned with representing knowledge in a form that computer systems can utilize to solve complex problems. Answer Set Programming (ASP), based on the stable model semantics, is a widely-used KR framework that facilitates elegant and efficient representations for many problem domains that require complex reasoning. However, while ASP is effective on deterministic problem domains, it is not suitable for applications involving quantitative uncertainty, for example, those that require probabilistic reasoning. Furthermore, it is hard to utilize information that can be statistically induced from data with …

Contributors
Wang, Yi, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2019

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational …

Contributors
YEH, HUAI-MING, Yan, Hao, Pan, Rong, et al.
Created Date
2019

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART. Dissertation/Thesis

Contributors
Yalov, Saar, Hahn, P. Richard, McCulloch, Robert, et al.
Created Date
2019

Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported …

Contributors
Zhou, Xiran, Li, Wenwen, Myint, Soe Win, et al.
Created Date
2019

This dissertation studies three classes of combinatorial arrays with practical applications in testing, measurement, and security. Covering arrays are widely studied in software and hardware testing to indicate the presence of faulty interactions. Locating arrays extend covering arrays to achieve identification of the interactions causing a fault by requiring additional conditions on how interactions are covered in rows. This dissertation introduces a new class, the anonymizing arrays, to guarantee a degree of anonymity by bounding the probability a particular row is identified by the interaction presented. Similarities among these arrays lead to common algorithmic techniques for their construction which this …

Contributors
Lanus, Erin, Colbourn, Charles J, Ahn, Gail-Joon, et al.
Created Date
2019

In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment. The objective …

Contributors
Zhou, Chenyang, Richa, Andrea, Sen, Arunabha, et al.
Created Date
2019

Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming. Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor …

Contributors
Izady Yazdanabadi, Mohammadhassan, Preul, Mark, Yang, Yezhou, et al.
Created Date
2019

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions …

Contributors
Yildirim, Mehmet Yigit, Davulcu, Hasan, Bakkaloglu, Bertan, et al.
Created Date
2019

Social media has become the norm of everyone for communication. The usage of social media has increased exponentially in the last decade. The myriads of Social media services such as Facebook, Twitter, Snapchat, and Instagram etc allow people to connect with their friends, and followers freely. The attackers who try to take advantage of this situation has also increased at an exponential rate. Every social media service has its own recommender systems and user profiling algorithms. These algorithms use users current information to make different recommendations. Often the data that is formed from social media services is Linked data as …

Contributors
Magham, Venkatesh, Liu, Huan, Wu, Liang, et al.
Created Date
2019

One of the main goals of computer architecture design is to improve performance without much increase in the power consumption. It cannot be achieved by adding increasingly complex intelligent schemes in the hardware, since they will become increasingly less power-efficient. Therefore, parallelism comes up as the solution. In fact, the irrevocable trend of computer design in near future is still to keep increasing the number of cores while reducing the operating frequency. However, it is not easy to scale number of cores. One important challenge is that existing cores consume too much power. Another challenge is that cache-based memory hierarchy …

Contributors
Lu, Jing, Shrivastava, Aviral, Sarjoughian, Hessam, et al.
Created Date
2019