Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2015 2019


Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose …

Contributors
Chhabra, Sachin, Li, Baoxin, Venkateswara, Hemanth, et al.
Created Date
2019

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from …

Contributors
Cao, Jun, Li, Baoxin, Liu, Huan, et al.
Created Date
2018

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, …

Contributors
Song, Huan, Spanias, Andreas, Thiagarajan, Jayaraman, et al.
Created Date
2018

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to …

Contributors
Sistla, Ragini, Zhao, Ming, Zhao, Ming, et al.
Created Date
2018

Machine learning models convert raw data in the form of video, images, audio, text, etc. into feature representations that are convenient for computational process- ing. Deep neural networks have proven to be very efficient feature extractors for a variety of machine learning tasks. Generative models based on deep neural networks introduce constraints on the feature space to learn transferable and disentangled rep- resentations. Transferable feature representations help in training machine learning models that are robust across different distributions of data. For example, with the application of transferable features in domain adaptation, models trained on a source distribution can be applied …

Contributors
Eusebio, Jose Miguel Ang, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2018

Deep learning architectures have been widely explored in computer vision and have depicted commendable performance in a variety of applications. A fundamental challenge in training deep networks is the requirement of large amounts of labeled training data. While gathering large quantities of unlabeled data is cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. Thus, developing algorithms that minimize the human effort in training deep models is of immense practical importance. Active learning algorithms automatically identify salient and exemplar samples from large amounts of unlabeled data and can augment maximal information …

Contributors
Ranganathan, Hiranmayi, Sethuraman, Panchanathan, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017

Computer Vision as a eld has gone through signicant changes in the last decade. The eld has seen tremendous success in designing learning systems with hand-crafted features and in using representation learning to extract better features. In this dissertation some novel approaches to representation learning and task learning are studied. Multiple-instance learning which is generalization of supervised learning, is one example of task learning that is discussed. In particular, a novel non-parametric k- NN-based multiple-instance learning is proposed, which is shown to outperform other existing approaches. This solution is applied to a diabetic retinopathy pathology detection problem eectively. In cases …

Contributors
Venkatesan, Ragav, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2017

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been …

Contributors
Singh, Shibani, Wang, Yalin, Li, Baoxin, et al.
Created Date
2017