Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach. In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore and predict students’ …

Contributors
Tian, Wenbo, Hsiao, Ihan, Bazzi, Rida, et al.
Created Date
2019

Reading comprehension is a critical aspect of life in America, but many English language learners struggle with this skill. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is a tablet-based interactive learning environment is designed to improve reading comprehension. During use of EMBRACE, all interactions with the system are logged, including correct and incorrect behaviors and help requests. These interactions could potentially be used to predict the child’s reading comprehension, providing an online measure of understanding. In addition, time-related features have been used for predicting learning by educational data mining models in mathematics and science, and may be …

Contributors
Dexheimer, Matthew Scott, Walker, Erin, Glenberg, Arthur, et al.
Created Date
2017

EMBRACE (Enhanced Moved By Reading to Accelerate Comprehension in English) is an IPad application that uses the Moved By Reading strategy to help improve the reading comprehension skills of bilingual (Spanish speaking) English Language Learners (ELLs). In EMBRACE, students read the text of a story and then move images corresponding to the text that they read. According to the embodied cognition theory, this grounds reading comprehension in physical experiences and thus is more engaging. In this thesis, I used the log data from 20 students in grades 2-5 to design a skill model for a student using EMBRACE. A skill …

Contributors
Furtado, Nicolette Dolores, Walker, Erin, Hsiao, Ihan, et al.
Created Date
2016

Computer supported collaborative learning (CSCL) has made great inroads in classroom teaching marked by the use of tools and technologies to support and enhance collaborative learning. Computer mediated learning environments produce large amounts of data, capturing student interactions, which can be used to analyze students’ learning behaviors (Martinez-Maldonado et al., 2013a). The analysis of the process of collaboration is an active area of research in CSCL. Contributing towards this area, Meier et al. (2007) defined nine dimensions and gave a rating scheme to assess the quality of collaboration. This thesis aims to extract and examine frequent patterns of students’ interactions …

Contributors
Chaudhry, Rishabh, Walker, Erin A, Maldonado-Martinez, Roberto, et al.
Created Date
2015