Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat …

Contributors
Al-Sayegh, Mohammed Taher, DeNardo, Dale, Angilletta, Michael, et al.
Created Date
2017

This dissertation uses a comparative approach to investigate long-term human- environment interrelationships in times of climate change. It uses Geographical Information Systems and ecological models to reconstruct the Magdalenian (~20,000- 14,000 calibrated years ago) environments of the coastal mountainous zone of Cantabria (Northwest Spain) and the interior valleys of the Dordogne (Southwest France) to contextualize the social networks that could have formed during a time of high climate and resource variability. It simulates the formation of such networks in an agent-based model, which documents the processes underlying the formation of archaeological assemblages, and evaluates the potential impacts of climate-topography interactions …

Contributors
Gravel-Miguel, Claudine, Barton, C. Michael, Coudart, Anick, et al.
Created Date
2017

Functional traits research has improved our understanding of how plants respond to their environments, identifying key trade-offs among traits. These studies primarily rely on correlative methods to infer trade-offs and often overlook traits that are difficult to measure (e.g., root traits, tissue senescence rates), limiting their predictive ability under novel conditions. I aimed to address these limitations and develop a better understanding of the trait space occupied by trees by integrating data and process models, spanning leaves to whole-trees, via modern statistical and computational methods. My first research chapter (Chapter 2) simultaneously fits a photosynthesis model to measurements of fluorescence …

Contributors
Fell, Michael, Ogle, Kiona, Barber, Jarrett, et al.
Created Date
2017

Megafauna species worldwide have undergone dramatic declines since the end of the Pleistocene, twelve thousand years ago. In response, there have been numerous calls to increase conservation attention to these ecologically important species. However, introduced megafauna continue to be treated as pests. This thesis evaluates the extent of this conservation paradox in relation to changing megafauna diversity from the Pleistocene to the Anthropocene and finds that introductions have provided refuge for a substantial number threatened and endangered megafaunal species and has restored generic diversity levels per continent to levels closer to the Pleistocene than the Holocene. Furthermore, this thesis describes …

Contributors
Lundgren, Erick, Stromberg, Juliet, Wu, Jianguo, et al.
Created Date
2017

Primary production in aquatic ecosystems is often limited by the availability of nitrogen (N) and/or phosphorus (P). Animals can substantially alter the relative availability of these nutrients by storing and recycling them in differential ratios. Variation in these stoichiometric traits, i.e., the elemental phenotype, within a species can link organismal evolution to ecosystem function. I examined the drivers of intraspecific variation in the elemental phenotype of aquatic consumers to test for the generality of these effects. Over a thermal gradient in Panamá, I found that average specific growth grate and body P content of the mayfly Thraulodes increased with environmental …

Contributors
Moody, Eric Kellan, Elser, James J, Sabo, John L, et al.
Created Date
2017

The spread of dengue worldwide currently places half of the world’s population at risk. In the absence of a dengue vaccine, control of the disease requires control of the mosquito species that transmit the virus. The most important of these is. Advances in research detailing the responsiveness of Aedes aegypti to small changes in climate enable the production of more sophisticated remote sensing and surveillance techniques for monitoring these populations. Close monitoring of global dengue activity and outbreaks likewise enables a greater specificity when determining to which human populations the virus is most likely to spread. There have been no …

Contributors
Hughes, Tyler C., Perrings, Charles, Kinzig, Ann, et al.
Created Date
2016

Throughout the Southwest, complex geology and physiography concomitant with climatic variability contribute to diverse stream hydrogeomorphologies. Many riparian plant species store their seeds in soil seed banks, and germinate in response to moisture pulses, but the climatic controls of this response are poorly understood. To better understand the ecological implications of a changing climate on riparian plant communities, I investigated seed bank responses to seasonal temperature patterns and to stream hydrogeomorphic type. I asked the following questions: Are there distinct suites of warm and cool temperature germinating species associated with Southwestern streams; how do they differ between riparian and terrestrial …

Contributors
Setaro, Danika, Stromberg, Juliet, Franklin, Janet, et al.
Created Date
2016

Context – Urbanization can have negative effects on bat habitat use through the loss and isolation of habitat even for volant bats. Yet, how bats respond to the changing landscape composition and configuration of urban environments remains poorly understood. Objective – This study examines the relationship between bat habitat use and landscape pattern across multiple scales in the Phoenix metropolitan region. My research explores how landscape composition and configuration affects bat activity, foraging activity, and species richness (response variables), and the distinct habitats that they use. Methods – I used a multi-scale landscape approach and acoustic monitoring data to create …

Contributors
Bazelman, Tracy Carol, Wu, Jianguo, Chambers, Carol L., et al.
Created Date
2016

A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments. In Chapters 2 and 3, I demonstrate how this approach provides …

Contributors
Udiani, Oyita Udiani, Kang, Yun, Fewell, Jennifer H, et al.
Created Date
2016

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n/n + 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an …

Contributors
Korytowski, Daniel A., Smith, Hal, Gumel, Abba, et al.
Created Date
2016