Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This research work uses the Weather Research and Forecasting Model to study the effect of large wind farms with an area of 900 square kilometers and a high power density of 7.58 W/m2 on regional climate. Simulations were performed with a wind farm parameterization scheme turned on in south Oregon. Control cases were also run with the parameterization scheme turned off. The primary emphasis was on offshore wind farms. Some analysis on onshore wind farms was also performed. The effects of these wind farms were studied on the vertical profiles of temperature, wind speed, and moisture as well as on …

Contributors
George, Sushant, Huang, Huei-Ping, Wang, Zhihua, et al.
Created Date
2016

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used …

Contributors
Kulkarni, Sujay, Huang, Huei-Ping, Calhoun, Ronald, et al.
Created Date
2014