Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


The advancements in additive manufacturing have made it possible to bring life to designs that would otherwise exist only on paper. An excellent example of such designs are the Triply Periodic Minimal Surface (TPMS) structures like Schwarz D, Schwarz P, Gyroid, etc. These structures are self-sustaining, i.e. they require minimal supports or no supports at all when 3D printed. These structures exist in stable form in nature, like butterfly wings are made of Gyroids. Automotive and aerospace industry have a growing demand for strong and light structures, which can be solved using TPMS models. In this research we will try …

Contributors
Raja, Faisal, Phelan, Patrick, Bhate, Dhruv, et al.
Created Date
2019

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain …

Contributors
Chinimilli, Prudhvi Tej, Redkar, Sangram, Zhang, Wenlong, et al.
Created Date
2018

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly …

Contributors
Miskin, Daniel L, Takahashi, Timothy T, Mignolet, Marc, et al.
Created Date
2018

The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior. A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial …

Contributors
Gandhi, Anurag, Peet, Yulia, Huang, Huei-Ping, et al.
Created Date
2017

The aerospike nozzle belongs to the class of altitude compensating nozzles making it a strong candidate for Space Shuttle Main Engines. Owing to their higher efficiency compared to conventional bell nozzles, the aerospike nozzles are being studied extensively and are being used for many Single State to Orbit (SSTO) designs. A rocket engine nozzle with altitude compensation, such as the aerospike, consumes less fuel than a rocket engine with a bell nozzle. Aerospike nozzles are huge and are often difficult to construct and have to be truncated in order to make them feasible for application in a rocket propulsion system. …

Contributors
Nagarajan, Venkatraman, White, Daniel B, Dahm, Werner, et al.
Created Date
2017

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial species and by applying the dynamical systems theory the effect of flow topology on the variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient in the turbulent flow, and analyzing the evolution of reaction associated with the observed high and low stretching regions. The Gaussian nutrient patch is released at different locations and the corresponding nutrient uptake is obtained. The variable stretching characteristics of the flow …

Contributors
George, Jino, Tang, Wenbo, Peet, Yulia, et al.
Created Date
2017

Space systems such as communication satellites, earth observation satellites and telescope require accurate pointing to observe fixed targets over prolonged time. These systems typically use reaction wheels to slew the spacecraft and gimballing systems containing motors to achieve precise pointing. Motor based actuators have limited life as they contain moving parts that require lubrication in space. Alternate methods have utilized piezoelectric actuators. This paper presents Shape memory alloys (SMA) actuators for control of a deployable antenna placed on a satellite. The SMAs are operated as a series of distributed linear actuators. These distributed linear actuators are not prone to single …

Contributors
Sonawane, Nikhil, Thangavelautham, Jekanthan, Huang, Huei-Ping, et al.
Created Date
2016

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during …

Contributors
Johnston, Joel Philip, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2016

With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and visualize them. The high fidelity environment is used to validate miss distance analysis with the results presented in relevant GNC textbooks and to examine how the kill zone varies with critical engagement parameters; e.g. initial engagement altitude, missile Mach, and missile maximum acceleration. A ray-based binary search algorithm is used to …

Contributors
Renganathan, Venkatraman, Rodriguez, Armando A, Artemiadis, Panagiotis, et al.
Created Date
2016

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account …

Contributors
Neerukatti, Rajesh Kumar, Chattopadhyay, Aditi, Jiang, Hanqing, et al.
Created Date
2016