Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Parts are always manufactured with deviations from their nominal geometry due to many reasons such as inherent inaccuracies in the machine tools and environmental conditions. It is a designer job to devise a proper tolerance scheme to allow reasonable freedom to a manufacturer for imperfections without compromising performance. It takes years of experience and strong practical knowledge of the device function, manufacturing process and GD&T standards for a designer to create a good tolerance scheme. There is almost no theoretical resource to help designers in GD&T synthesis. As a result, designers often create inconsistent and incomplete tolerance schemes that lead …

Contributors
Hejazi, Sayed Mohammad, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2016

There is very little in the way of prescriptive procedures to guide designers in tolerance specification. This shortcoming motivated the group at Design Automation Lab to automate tolerancing of mechanical assemblies. GD&T data generated by the Auto-Tolerancing software is semantically represented using a neutral Constraint Tolerance Feature (CTF) graph file format that is consistent with the ASME Y14.5 standard and the ISO STEP Part 21 file. The primary objective of this research is to communicate GD&T information from the CTF file to a neutral machine readable format. The latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering“ aims …

Contributors
Venkiteswaran, Adarsh, Shah, Jami J, Hardwick, Martin, et al.
Created Date
2016

A process plan is an instruction set for the manufacture of parts generated from detailed design drawings or CAD models. While these plans are highly detailed about machines, tools, fixtures and operation parameters; tolerances typically show up in less formal manner in such plans, if at all. It is not uncommon to see only dimensional plus/minus values on rough sketches accompanying the instructions. On the other hand, design drawings use standard GD&T (Geometrical Dimensioning and tolerancing) symbols with datums and DRFs (Datum Reference Frames) clearly specified. This is not to say that process planners do not consider tolerances; they are …

Contributors
Haghighi, Payam, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2015

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. …

Contributors
Vemulapalli, Prabath, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2014

This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this thesis are fully compatible with the ASME Y14.5 Standard. A pattern of square profiles, both linear and 2D, is used throughout this thesis to illustrate the idea of constructing the T-Maps for line profiles. The Standard defines two ways of tolerancing a pattern of profiles - Composite Tolerancing and Multiple …

Contributors
Rao, Shyam, Davidson, Joseph K, Arizona State University
Created Date
2014