Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The demand for miniaturized components with feature sizes as small as tens of microns and tolerances as small as 0.1 microns is on the rise in the fields of aerospace, electronics, optics and biomedical engineering. Micromilling has proven to be a process capable of generating the required accuracy for these features and is an alternative to various non-mechanical micro-manufacturing processes which are limited in terms of cost and productivity, especially at the micro-meso scale. The micromilling process is on the surface, a miniaturized version of conventional milling, hence inheriting its benefits. However, the reduction in scale by a few magnitudes …

Contributors
Bajaj, Anuj Kishorkumar, Sodemann, Angela A, Bekki, Jeniffer, et al.
Created Date
2015

A process plan is an instruction set for the manufacture of parts generated from detailed design drawings or CAD models. While these plans are highly detailed about machines, tools, fixtures and operation parameters; tolerances typically show up in less formal manner in such plans, if at all. It is not uncommon to see only dimensional plus/minus values on rough sketches accompanying the instructions. On the other hand, design drawings use standard GD&T (Geometrical Dimensioning and tolerancing) symbols with datums and DRFs (Datum Reference Frames) clearly specified. This is not to say that process planners do not consider tolerances; they are …

Contributors
Haghighi, Payam, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2015

This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this thesis are fully compatible with the ASME Y14.5 Standard. A pattern of square profiles, both linear and 2D, is used throughout this thesis to illustrate the idea of constructing the T-Maps for line profiles. The Standard defines two ways of tolerancing a pattern of profiles - Composite Tolerancing and Multiple …

Contributors
Rao, Shyam, Davidson, Joseph K, Arizona State University
Created Date
2014