Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2010 2019


Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential …

Contributors
Maarsingh, Jason, Haydel, Shelley E, Roland, Kenneth, et al.
Created Date
2019

Valley Fever (VF), is a potentially lethal fungal pneumonia caused by Coccidioides spp., which is estimated to cause ~15-30% of all community-acquired pneumonias in the highly endemic Greater Phoenix and Tucson areas of Arizona. However, an accurate antigen-based diagnostic is still lacking. In order to identify protein and glycan antigen biomarkers of infection, I used a combination of genomics, proteomics and glycomics analyses to provide evidence of genus-specific proteins and glycosylations. The next goal was to determine if Coccidioides-specific glycans were present in biological samples from VF patients. Urine collected from 77 humans and 63 dogs were enriched for glycans …

Contributors
Mitchell, Natalie Michelle, Lake, Douglas F, Bean, Heather D, et al.
Created Date
2019

Biological soil crusts (biocrusts) are topsoil communities of organisms that contribute to soil fertility and erosion resistance in drylands. Anthropogenic disturbances can quickly damage these communities and their natural recovery can take decades. With the development of accelerated restoration strategies in mind, I studied physiological mechanisms controlling the establishment of cyanobacteria in biocrusts, since these photoautotrophs are not just the biocrust pioneer organisms, but also largely responsible for improving key soil attributes such as physical stability, nutrient content, water retention and albedo. I started by determining the cyanobacterial community composition of a variety of biocrust types from deserts in the …

Contributors
Giraldo Silva, Ana Maria, Garcia-Pichel, Ferran, Barger, Nichole N, et al.
Created Date
2019

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve …

Contributors
Romero, Joseph Thomas, Shock, Everett L, Cadillo-Quiroz, Hinsby, et al.
Created Date
2018

Radioactive cesium (137Cs), released from nuclear power plants and nuclear accidental releases, is a problem due to difficulties regarding its removal. Efforts have been focused on removing cesium and the remediation of the contaminated environment. Traditional treatment techniques include Prussian blue and nano zero-valent ion (nZVI) and nano-Fe/Cu particles to remove Cs from water; however, they are not efficient at removing Cs when present at low concentrations of about 10 parts-per-billion (ppb), typical of concentrations found in the radioactive contaminated sites. The objective of this study was to develop an innovative and simple method to remove Cs+ present at low …

Contributors
Hakim Elahi, Sepideh, Conroy-Ben, Otakuye, Abbaszadegan, Morteza, et al.
Created Date
2018

Synechocystis sp. PCC 6803 is a readily transformable cyanobacteria used to study cyanobacterial genetics, as well as production of biofuels, polyesters, and other industrial chemicals. Free fatty acids are precursors to biofuels which are used by Synechocystis cells as a means of energy storage. By genetically modifying the cyanobacteria to expel these chemicals, costs associated with retrieving the products will be reduced; concurrently, the bacteria will be able to produce the products at a higher concentration. This is achieved by adding genes encoding components of the Escherichia coli AcrAB-TolC efflux system, part of the resistance-nodulation-division (RND) transporter family, to Synechocystis …

Contributors
Bellefleur, Matthew Paul Allen, Curtiss, III, Roy, Nielsen, David R, et al.
Created Date
2018

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better …

Contributors
Russell, Jazmine B, Neuer, Susanne, Fox, Peter, et al.
Created Date
2018

Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a …

Contributors
Hunter, Joseph G, Mason, Hugh, Mor, Tsafrir, et al.
Created Date
2018

Zika virus (ZIKV) outbreaks have been linked to several neurological pathologies in the developing fetus, which can progress to spontaneous abortion and microcephaly in newborns whose mothers were infected with the virus during pregnancy. ZIKV has also been correlated with neurological complications in adults such as Guillain-Barré Syndrome (GBS). ZIKV outbreaks often occur in low income areas with limited access to healthcare. Therefore, there is a need to create a low-cost preventative vaccine against the virus. Mature ZIKV particles contain a lipid bilayer, a positive sense single stranded RNA genome and three structural proteins: the envelope (E), membrane (M) and …

Contributors
Di Palma, Michelle Pina, Mor, Tsafrir S, Mason, Hugh S, et al.
Created Date
2018

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in …

Contributors
Kurgan, Gavin, Wang, Xuan, Nielsen, David, et al.
Created Date
2018