Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Medulloblastoma is the most common malignant pediatric brain cancer and is classified into four different subgroups based on genetic profiling: sonic hedgehog (SHH), WNT, Group 3 and 4. Changes in gene expression often alter the progression and development of cancers. One way to control gene expression is through the acetylation and deacetylation of histones. More specifically in medulloblastoma SHH and Group 3, there is an increased deacetylation, and histone deacetylase inhibitors (HDACi) can be used to target this change. Not only can HDACi target increases in deacetylation, they are also known to induce cell cycle arrest and apoptosis. The combination …

Contributors
Dharmaraj, Shruti, Sirianni, Rachael W, Stabenfeldt, Sarah E, et al.
Created Date
2019

Glioblastoma (GBM) is the most common primary brain tumor with an incidence of approximately 11,000 Americans. Despite decades of research, average survival for GBM patients is a modest 15 months. Increasing the extent of GBM resection increases patient survival. However, extending neurosurgical margins also threatens the removal of eloquent brain. For this reason, the infiltrative nature of GBM is an obstacle to its complete resection. We hypothesize that targeting genes and proteins that regulate GBM motility, and developing techniques that safely enhance extent of surgical resection, will improve GBM patient survival by decreasing infiltration into eloquent brain regions and enhancing …

Contributors
Georges, Joseph, Feuerstein, Burt G, Smith, Brian H, et al.
Created Date
2014