Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The highly specialized telomerase ribonucleoprotein enzyme is composed minimally of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) for catalytic activity. Telomerase is an RNA-dependent DNA polymerase that syntheizes DNA repeats at chromosome ends to maintain genome stability. While TERT is highly conserved among various groups of species, the TR subunit exhibits remarkable divergence in primary sequence, length, secondary structure and biogenesis, making TR identification extremely challenging even among closely related groups of organisms. A unique computational approach combined with in vitro telomerase activity reconstitution studies was used to identify 83 novel TRs from 10 animal kingdom phyla spanning 18 …

Contributors
Logeswaran, Dhenugen, Chen, Julian J-L, Ghirlanda, Giovanna, et al.
Created Date
2019

Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using a complex and currently poorly understood mechanism of template translocation to stop nucleotide addition, regenerate its template, and then synthesize a new repeat. In this study, several novel interactions between the telomerase protein and RNA components along with the DNA substrate are identified and characterized which come together to allow …

Contributors
Brown, Andrew, Chen, Julian J. L., Jones, Anne, et al.
Created Date
2014