Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2011 2019


Understanding the evolution of the Himalayan-Tibetan orogen is important because of its purported effects on global geodynamics, geochemistry and climate. It is surprising that the timing of initiation of this canonical collisional orogen is poorly constrained, with estimates ranging from Late Cretaceous to Early Oligocene. This study focuses on the Ladakh region in the northwestern Indian Himalaya, where early workers suggested that sedimentary deposits of the Indus Basin molasse sequence, located in the suture zone, preserve a record of the early evolution of orogenesis, including initial collision between India and Eurasia. Recent studies have challenged this interpretation, but resolution of …

Contributors
Tripathy, Alka, Hodges, Kip V, Semken, Steven, et al.
Created Date
2011

Dust devils have proven to be commonplace on Mars, although their occurrence is unevenly distributed across the surface. They were imaged or inferred by all six successful landed spacecraft: the Viking 1 and 2 Landers (VL-1 and VL-2), Mars Pathfinder Lander, the Mars Exploration Rovers Spirit and Opportunity, and the Phoenix Mars Lander. Comparisons of dust devil parameters were based on results from optical and meteorological (MET) detection campaigns. Spatial variations were determined based on comparisons of their frequency, morphology, and behavior. The Spirit data spanning three consecutive martian years is used as the basis of comparison because it is …

Contributors
Waller, Devin Ashley, Greeley, Ronald, Christensen, Philip, et al.
Created Date
2011

Many shallow craters near the Spirit Mars Exploration Rover landing site contain asymmetric deposits of windblown sediments which could indicate the predominant local wind direction at the time of deposition or redistribution. Wind tunnel simulations and field studies of terrestrial craters were used to determine trends in deposition as a function of crater morphometry and wind direction. Terrestrial analog field work at the Amboy lava field, Mojave Desert, California, included real-time wind measurements and assessments of active sediment deposition in four small (<100 m) craters. Preliminary results indicate that reverse flow or stagnant wind and deposition on the upwind side …

Contributors
Kienenberger, Rebekah L., Greeley, Ronald, Christensen, Philip, et al.
Created Date
2011

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and …

Contributors
Rubin, Mark E., Desch, Steven J, Sharp, Thomas, et al.
Created Date
2013

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to …

Contributors
Heath, Simon Nicholas, Christensen, Philip, Bel, James, et al.
Created Date
2013

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify …

Contributors
Lai, Jason Chi-Shun, Bell, James, Christensen, Philip, et al.
Created Date
2014

Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. …

Contributors
Smekens, Jean-Francois, Clarke, Amanda, Christensen, Philip, et al.
Created Date
2015

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as …

Contributors
Stopar, Julie, Robinson, Mark S., Bell, James, et al.
Created Date
2016

The Kilopixel Array Pathfinder Project (KAPPa) advances the number of coherent high-frequency terahertz (THz) receivers that could be packed into a single focal plane array on existing submm telescopes. The KAPPa receiver, at 655-695 GHz, is a high frequency heterodyne receiver that can achieve system temperatures of less than 200 K, the specification for ALMA band-9. The KAPPa receiver uses a novel design of a permanent magnet to suppress the noise generated by the DC Josephson effect. This is in stark contrast to the benchmark solution of an electromagnet that is both too expensive and too large for use in …

Contributors
Wheeler, Caleb Wheeler, Groppi, Christopher E, Butler, Nathaniel, et al.
Created Date
2016

ABSTRACT The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years. Small fields of bedforms comprised of dark material, and dark dust devil tracks are among the features revealed in the images. The bedforms are constrained within craters on the plains, and unconstrained in depressions less than 200m wide within the topography of the Columbia Hills, a ~120m-high structure in center of Gusev. Dust …

Contributors
Pendleton-Hoffer, Mary C., Christensen, Philip, Whipple, Kelin, et al.
Created Date
2016