Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline …

Contributors
Xu, Yuning, Green, Samuel, Levy, Roy, et al.
Created Date
2018

Institutions of higher education often tout that they are developing students to become lifelong learners. Evaluative efforts in this area have been presumably hindered by the lack of a uniform conceptualization of lifelong learning. Lifelong learning has been defined from institutional, economic, socio-cultural, and pedagogical perspectives, among others. This study presents the existing operational definitions and theories of lifelong learning in the context of higher education and synthesizes them to propose a unified model of college students' orientation toward lifelong learning. The model theorizes that orientation toward lifelong learning is a latent construct which manifests as students' likelihood to engage …

Contributors
Arcuria, Phil, Thompson, Marilyn, Green, Samuel, et al.
Created Date
2011

This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by …

Contributors
Crawford, Aaron Vaughn, Levy, Roy, Green, Samuel, et al.
Created Date
2014

The existing minima for sample size and test length recommendations for DIMTEST (750 examinees and 25 items) are tied to features of the procedure that are no longer in use. The current version of DIMTEST uses a bootstrapping procedure to remove bias from the test statistic and is packaged with a conditional covariance-based procedure called ATFIND for partitioning test items. Key factors such as sample size, test length, test structure, the correlation between dimensions, and strength of dependence were manipulated in a Monte Carlo study to assess the effectiveness of the current version of DIMTEST with fewer examinees and items. …

Contributors
Fay, Derek M., Levy, Roy, Green, Samuel, et al.
Created Date
2012

The use of exams for classification purposes has become prevalent across many fields including professional assessment for employment screening and standards based testing in educational settings. Classification exams assign individuals to performance groups based on the comparison of their observed test scores to a pre-selected criterion (e.g. masters vs. nonmasters in dichotomous classification scenarios). The successful use of exams for classification purposes assumes at least minimal levels of accuracy of these classifications. Classification accuracy is an index that reflects the rate of correct classification of individuals into the same category which contains their true ability score. Traditional methods estimate classification …

Contributors
Kunze, Katie L., Gorin, Joanna, Levy, Roy, et al.
Created Date
2013

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across …

Contributors
Liu, Yixing, Thompson, Marilyn, Green, Samuel, et al.
Created Date
2016

Structural equation modeling is potentially useful for assessing mean differences between groups on latent variables (i.e., factors). However, to evaluate these differences accurately, the parameters of the indicators of these latent variables must be specified correctly. The focus of the current research is on the specification of between-group equality constraints on the loadings and intercepts of indicators. These equality constraints are referred to as invariance constraints. Previous simulation studies in this area focused on fitting a particular model to data that were generated to have various levels and patterns of non-invariance. Results from these studies were interpreted from a viewpoint …

Contributors
Xu, Yuning, Green, Samuel, Levy, Roy, et al.
Created Date
2014