ASU Electronic Theses and Dissertations
This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.
In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.
Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.
- Levy, Roy
- Thompson, Marilyn
- Green, Samuel
- 2 Arizona State University
- 1 Crawford, Aaron Vaughn
- 1 Xu, Yuning
- 2 English
- 2 Educational tests & measurements
- 2 Statistics
- 1 BN
- 1 PPMC
- 1 PPP-value
- 1 Quantitative psychology
- 1 Quantitative psychology and psychometrics
- more
- 1 bifactor models
- 1 dimensionality
- 1 discrepancy measures
- 1 latent class
- 1 latent means
- 1 measurement invariance
- 1 multidimensional
- 1 simulation
- 1 structural equation modeling
- Dwarf Galaxies as Laboratories of Protogalaxy Physics: Canonical Star Formation Laws at Low Metallicity
- Evolutionary Genetics of CORL Proteins
- Social Skills and Executive Functioning in Children with PCDH-19
- Deep Domain Fusion for Adaptive Image Classification
- Software Defined Pulse-Doppler Radar for Over-The-Air Applications: The Joint Radar-Communications Experiment
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline …
- Contributors
- Xu, Yuning, Green, Samuel, Levy, Roy, et al.
- Created Date
- 2018
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by …
- Contributors
- Crawford, Aaron Vaughn, Levy, Roy, Green, Samuel, et al.
- Created Date
- 2014