Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2012 2019


In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of …

Contributors
Anirudh, Rushil, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2012

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2012

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap …

Contributors
Desai, Vaishnav Jagannath, Sundaram, Hari, Li, Baoxin, et al.
Created Date
2013

Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks. Recent literature shows that many computer vision and image processing problems can be solved by using the matrix completion theory. This thesis explores the application of matrix completion in video denoising. A state-of-the-art video denoising algorithm in which the denoising task is modeled as a matrix completion problem is chosen …

Contributors
Maguluri, Hima Bindu, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2013

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy …

Contributors
Boyd, Jeffrey, Sundaram, Hari, Li, Baoxin, et al.
Created Date
2014

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm …

Contributors
Zhang, Qiang, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2014

In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and …

Contributors
Walker, Collin Christopher, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2014

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2015

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: …

Contributors
VENKATARAMAN, VINAY, Turaga, Pavan, Papandreou-Suppappol, Antonia, et al.
Created Date
2016

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects. Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort …

Contributors
Chen, Lin, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2016