Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Status
  • Public
Date Range
2010 2019


Bangladesh is a secular democracy with almost 90% of its population constituting of Muslims and the rest 10% constituting of the minority groups that includes Hindus, Christians, Buddhists, Ahmadi Muslims, Shia, Sufi, LGBT groups and Atheists. In recent years, Bangladesh has experienced an increase in attacks by religious extremist groups, such as IS and AQIS affiliates, hate-groups and politically motivated violence. Attacks have also become indiscriminate, with assailants targeting a wide variety of individuals, including religious minorities and foreigners. According to the telecoms regulator, the number of internet users in Bangladesh now stands at over 66.8 million reaching 41% penetration. …

Contributors
Chhabra, Pankaj, Davulcu, Hasan, Li, Baoxin, et al.
Created Date
2017

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: …

Contributors
VENKATARAMAN, VINAY, Turaga, Pavan, Papandreou-Suppappol, Antonia, et al.
Created Date
2016

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to …

Contributors
Aditya, Somak, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2018

One of the most remarkable outcomes resulting from the evolution of the web into Web 2.0, has been the propelling of blogging into a widely adopted and globally accepted phenomenon. While the unprecedented growth of the Blogosphere has added diversity and enriched the media, it has also added complexity. To cope with the relentless expansion, many enthusiastic bloggers have embarked on voluntarily writing, tagging, labeling, and cataloguing their posts in hopes of reaching the widest possible audience. Unbeknown to them, this reaching-for-others process triggers the generation of a new kind of collective wisdom, a result of shared collaboration, and the …

Contributors
Galan, Magdiel Francisco, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2015

In this thesis, we consider the problem of fast and efficient indexing techniques for time sequences which evolve on manifold-valued spaces. Using manifolds is a convenient way to work with complex features that often do not live in Euclidean spaces. However, computing standard notions of geodesic distance, mean etc. can get very involved due to the underlying non-linearity associated with the space. As a result a complex task such as manifold sequence matching would require very large number of computations making it hard to use in practice. We believe that one can device smart approximation algorithms for several classes of …

Contributors
Anirudh, Rushil, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2012

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017

Social situational awareness, or the attentiveness to one's social surroundings, including the people, their interactions and their behaviors is a complex sensory-cognitive-motor task that requires one to be engaged thoroughly in understanding their social interactions. These interactions are formed out of the elements of human interpersonal communication including both verbal and non-verbal cues. While the verbal cues are instructive and delivered through speech, the non-verbal cues are mostly interpretive and requires the full attention of the participants to understand, comprehend and respond to them appropriately. Unfortunately certain situations are not conducive for a person to have complete access to their …

Contributors
Krishna, Sreekar, Panchanathan, Sethuraman, Black, John A, et al.
Created Date
2011

Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or low-level data entities. Also, additional domain knowledge may often be indispensable for uncovering the underlying semantics, but in most cases such domain knowledge is not readily available from the acquired media streams. Thus, making use of various types of contextual information and leveraging corresponding domain knowledge are vital for effectively …

Contributors
Wang, Zheshen, Li, Baoxin, Sundaram, Hari, et al.
Created Date
2011

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic. This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to …

Contributors
Shao, Dangdang, Tao, Nongjian, Li, Baoxin, et al.
Created Date
2016

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this …

Contributors
Sun, Liang, Ye, Jieping, Li, Baoxin, et al.
Created Date
2011