Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Status
  • Public
Date Range
2012 2020


In the sport of competitive water skiing, the skill of a human boat driver can affect athletic performance. Driver influence is not necessarily inhibitive to skiers, however, it reduces the fairness and credibility of the sport overall. In response to the stated problem, this thesis proposes a vision-based real-time control system designed specifically for tournament waterski boats. The challenges addressed in this thesis include: one, the segmentation of floating objects in frame sequences captured by a moving camera, two, the identification of segmented objects which fit a predefined model, and three, the accurate and fast estimation of camera position and …

Contributors
Walker, Collin Christopher, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2014

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of …

Contributors
Haddad, Bashar Muneer, Karam, Lina, Li, Baoxin, et al.
Created Date
2019

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2019

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap …

Contributors
Desai, Vaishnav Jagannath, Sundaram, Hari, Li, Baoxin, et al.
Created Date
2013

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2012

Light field imaging is limited in its computational processing demands of high sampling for both spatial and angular dimensions. Single-shot light field cameras sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing incoming rays onto a 2D sensor array. While this resolution can be recovered using compressive sensing, these iterative solutions are slow in processing a light field. We present a deep learning approach using a new, two branch network architecture, consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution 4D light field from a single coded 2D image. This network decreases reconstruction time …

Contributors
Gupta, Mayank, Turaga, Pavan, Yang, Yezhou, et al.
Created Date
2017

Compressive sensing theory allows to sense and reconstruct signals/images with lower sampling rate than Nyquist rate. Applications in resource constrained environment stand to benefit from this theory, opening up many possibilities for new applications at the same time. The traditional inference pipeline for computer vision sequence reconstructing the image from compressive measurements. However,the reconstruction process is a computationally expensive step that also provides poor results at high compression rate. There have been several successful attempts to perform inference tasks directly on compressive measurements such as activity recognition. In this thesis, I am interested to tackle a more challenging vision problem …

Contributors
Huang, Li-chi, Turaga, Pavan, Yang, Yezhou, et al.
Created Date
2017

In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the emergence of novel imagers called spatial-multiplexing cameras, which offer compression at the sensing level itself by providing an arbitrary linear measurements of the scene instead of pixel-based sampling. In this dissertation, I discuss various approaches for effective information extraction from spatial-multiplexing measurements and present the trade-offs between reliability of the …

Contributors
Kulkarni, Kuldeep Sharad, Turaga, Pavan, Li, Baoxin, et al.
Created Date
2017

Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks. Recent literature shows that many computer vision and image processing problems can be solved by using the matrix completion theory. This thesis explores the application of matrix completion in video denoising. A state-of-the-art video denoising algorithm in which the denoising task is modeled as a matrix completion problem is chosen …

Contributors
Maguluri, Hima Bindu, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2013

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: …

Contributors
VENKATARAMAN, VINAY, Turaga, Pavan, Papandreou-Suppappol, Antonia, et al.
Created Date
2016