Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Mime Type
  • application/pdf
Resource Type
  • Doctoral Dissertation
Status
  • Public
Date Range
2010 2020


Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly and individuals with cognitive impairment are a major motivating factor for sensor-based activity recognition systems. However, the process of discerning relevant activity information from these sensor streams such as accelerometers is a non-trivial task and is an on-going research area. The difficulty stems from factors such as spatio-temporal variations in …

Contributors
Chatapuram Krishnan, Narayanan, Panchanathan, Sethuraman, Sundaram, Hari, et al.
Created Date
2010

In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in …

Contributors
Tadayon, Ramin, Panchanathan, Sethuraman, McDaniel, Troy, et al.
Created Date
2017

The rapid advancements of technology have greatly extended the ubiquitous nature of smartphones acting as a gateway to numerous social media applications. This brings an immense convenience to the users of these applications wishing to stay connected to other individuals through sharing their statuses, posting their opinions, experiences, suggestions, etc on online social networks (OSNs). Exploring and analyzing this data has a great potential to enable deep and fine-grained insights into the behavior, emotions, and language of individuals in a society. This proposed dissertation focuses on utilizing these online social footprints to research two main threads – 1) Analysis: to …

Contributors
Manikonda, Lydia, Kambhampati, Subbarao, Liu, Huan, et al.
Created Date
2019

The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII) In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main …

Contributors
Tadayon, Arash, Panchanathan, Sethuraman, McDaniel, Troy, et al.
Created Date
2020

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of …

Contributors
Haddad, Bashar Muneer, Karam, Lina, Li, Baoxin, et al.
Created Date
2019

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities …

Contributors
Chakraborty, Shayok, Panchanathan, Sethuraman, Balasubramanian, Vineeth N., et al.
Created Date
2013

Due to the advent of easy-to-use, portable, and cost-effective brain signal sensing devices, pervasive Brain-Machine Interface (BMI) applications using Electroencephalogram (EEG) are growing rapidly. The main objectives of these applications are: 1) pervasive collection of brain data from multiple users, 2) processing the collected data to recognize the corresponding mental states, and 3) providing real-time feedback to the end users, activating an actuator, or information harvesting by enterprises for further services. Developing BMI applications faces several challenges, such as cumbersome setup procedure, low signal-to-noise ratio, insufficient signal samples for analysis, and long processing times. Internet-of-Things (IoT) technologies provide the opportunity …

Contributors
Sadeghi Oskooyee, Seyed Koosha, Gupta, Sandeep K S, Santello, Marco, et al.
Created Date
2020

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of …

Contributors
Chattopadhyay, Rita, Panchanathan, Sethuraman, Ye, Jieping, et al.
Created Date
2013

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2019

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is …

Contributors
Som, Anirudh, Turaga, Pavan, Krishnamurthi, Narayanan, et al.
Created Date
2020