Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Status
  • Public
Date Range
2010 2019


Cognitive Radios (CR) are designed to dynamically reconfigure their transmission and/or reception parameters to utilize the bandwidth efficiently. With a rapidly fluctuating radio environment, spectrum management becomes crucial for cognitive radios. In a Cognitive Radio Ad Hoc Network (CRAHN) setting, the sensing and transmission times of the cognitive radio play a more important role because of the decentralized nature of the network. They have a direct impact on the throughput. Due to the tradeoff between throughput and the sensing time, finding optimal values for sensing time and transmission time is difficult. In this thesis, a method is proposed to improve …

Contributors
Bapat, Namrata, Syrotiuk, Violet R, Ahn, Gail-Joon, et al.
Created Date
2012

This thesis studies recommendation systems and considers joint sampling and learning. Sampling in recommendation systems is to obtain users' ratings on specific items chosen by the recommendation platform, and learning is to infer the unknown ratings of users to items given the existing data. In this thesis, the problem is formulated as an adaptive matrix completion problem in which sampling is to reveal the unknown entries of a $U\times M$ matrix where $U$ is the number of users, $M$ is the number of items, and each entry of the $U\times M$ matrix represents the rating of a user to an …

Contributors
Zhu, Lingfang, Xue, Guoliang, He, Jingrui, et al.
Created Date
2015

Imagine that we have a piece of matter that can change its physical properties like its shape, density, conductivity, or color in a programmable fashion based on either user input or autonomous sensing. This is the vision behind what is commonly known as programmable matter. Envisioning systems of nano-sensors devices, programmable matter consists of systems of simple computational elements, called particles, that can establish and release bonds, compute, and can actively move in a self-organized way. In this dissertation the feasibility of solving fundamental problems relevant for programmable matter is investigated. As a model for such self-organizing particle systems (SOPS), …

Contributors
Derakhshandeh, Zahra, Richa, Andrea, Sen, Arunabha, et al.
Created Date
2017

Passwords are ubiquitous and are poised to stay that way due to their relative usability, security and deployability when compared with alternative authentication schemes. Unfortunately, humans struggle with some of the assumptions or requirements that are necessary for truly strong passwords. As administrators try to push users towards password complexity and diversity, users still end up using predictable mangling patterns on old passwords and reusing the same passwords across services; users even inadvertently converge on the same patterns to a surprising degree, making an attacker’s job easier. This work explores using machine learning techniques to pick out strong passwords from …

Contributors
Todd, Margaret Nicole, Xue, Guoliang, Ahn, Gail-Joon, et al.
Created Date
2016

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However, as one of the most creative networking technologies, Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud computing environment because the lack of comprehensive development framework and processing flow. Simply migration from traditional IDS/IPS systems to SDN environment are not effective enough for detecting and defending malicious …

Contributors
Xiong, Zhengyang, Huang, Dijiang, Xue, Guoliang, et al.
Created Date
2014

Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research work presented in this manuscript. Specifically, anonymity issue in Mobile Ad hoc Networks (MANETs) is discussed with details as the first section of research. To thoroughly study on this topic, the presented work approaches it from an attacker's perspective. Under a perfect scenario, all the traffic in a targeted MANET …

Contributors
Li, Bing, Huang, Dijiang, Xue, Guoliang, et al.
Created Date
2016

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived …

Contributors
Zhou, Shan, Ying, Lei, Zhang, Yanchao, et al.
Created Date
2013

A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under a common thread of characterizing and improving Quality of Service (QoS) for the SUs, this dissertation is progressively organized under two main thrusts: the first thrust focuses on SU's throughput by exploiting the underlying properties of the PU spectrum to perform effective scheduling algorithms; and the second thrust aims at another important QoS performance of the SUs, namely delay, subject …

Contributors
Wang, Shanshan, Zhang, Junshan, Xue, Guoliang, et al.
Created Date
2012

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files. The loss rate of incoming log packets is high due to the incoming rate of the data. The Rsyslog servers are overwhelmed by the continuous data stream. To solve this problem a software defined networking (SDN) based load balancer is designed to perform a transport-level load balancing over the incoming …

Contributors
Ghaffarinejad, Ashkan, Syrotiuk, Violet R, Xue, Guoliang, et al.
Created Date
2015

We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale to hundreds and thousands of cores. In addition, caches and coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die area. Therefore, a more scalable architecture is needed for manycore architectures. Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable …

Contributors
Bai, Ke, Shrivastava, Aviral, Chatha, Karamvir, et al.
Created Date
2014

A myriad of social media services are emerging in recent years that allow people to communicate and express themselves conveniently and easily. The pervasive use of social media generates massive data at an unprecedented rate. It becomes increasingly difficult for online users to find relevant information or, in other words, exacerbates the information overload problem. Meanwhile, users in social media can be both passive content consumers and active content producers, causing the quality of user-generated content can vary dramatically from excellence to abuse or spam, which results in a problem of information credibility. Trust, providing evidence about with whom users …

Contributors
Tang, Jiliang, Liu, Huan, Xue, Guoliang, et al.
Created Date
2015

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network …

Contributors
Yang, Dejun, Xue, Guoliang, Richa, Andrea, et al.
Created Date
2013

In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment. The objective …

Contributors
Zhou, Chenyang, Richa, Andrea, Sen, Arunabha, et al.
Created Date
2019

Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding the location of node/link faults, i.e., the faulty nodes and links may be close to each other or far from each other. However, in many real life scenarios, there exists a strong spatial correlation among the faulty nodes and links. Such failures are often encountered in disaster situations, e.g., natural …

Contributors
Banerjee, Sujogya, Sen, Arunabha, Xue, Guoliang, et al.
Created Date
2013

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions. I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS …

Contributors
Khodadadeh, Roozbeh, Sankar, Lalitha, Xue, Guoliang, et al.
Created Date
2019

Peer-to-peer systems are known to be vulnerable to the Sybil attack. The lack of a central authority allows a malicious user to create many fake identities (called Sybil nodes) pretending to be independent honest nodes. The goal of the malicious user is to influence the system on his/her behalf. In order to detect the Sybil nodes and prevent the attack, a reputation system is used for the nodes, built through observing its interactions with its peers. The construction makes every node a part of a distributed authority that keeps records on the reputation and behavior of the nodes. Records of …

Contributors
Cárdenas-Haro, José Antonio, Konjevod, Goran, Richa, Andrea W., et al.
Created Date
2010

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the …

Contributors
Kilari, Vishnu Teja, Xue, Guoliang, Ahn, Gail-Joon, et al.
Created Date
2013

Resource allocation is one of the most challenging issues policy decision makers must address. The objective of this thesis is to explore the resource allocation from an economical perspective, i.e., how to purchase resources in order to satisfy customers' requests. In this thesis, we attend to answer the question: when and how to buy resources to fulfill customers' demands with minimum costs? The first topic studied in this thesis is resource allocation in cloud networks. Cloud computing heralded an era where resources (such as computation and storage) can be scaled up and down elastically and on demand. This flexibility is …

Contributors
Hu, Xinhui, Richa, Andrea, Schmid, Stefan, et al.
Created Date
2015

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI and PlanetLab have further improved the current Internet-based resource provisioning system by allowing end users to construct a virtual networking environment. By archiving the similar goal but with more flexible and efficient performance, I present the design and implementation of MobiCloud that is a geo-distributed mobile cloud computing platform, and G-PLaNE …

Contributors
Xing, Tianyi, Huang, Dijiang, Xue, Guoliang, et al.
Created Date
2014

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices. In this dissertation, I am interested in …

Contributors
Li, Lingjun, Xue, Guoliang, Ahn, Gail-Joon, et al.
Created Date
2014

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching …

Contributors
Alipourfard, Omid, Syrotiuk, Violet R, Richa, Andrea W, et al.
Created Date
2014

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their …

Contributors
Li, Jundong, Liu, Huan, Faloutsos, Christos, et al.
Created Date
2019

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017

With the rise of social media, user-generated content has become available at an unprecedented scale. On Twitter, 1 billion tweets are posted every 5 days and on Facebook, 20 million links are shared every 20 minutes. These massive collections of user-generated content have introduced the human behavior's big-data. This big data has brought about countless opportunities for analyzing human behavior at scale. However, is this data enough? Unfortunately, the data available at the individual-level is limited for most users. This limited individual-level data is often referred to as thin data. Hence, researchers face a big-data paradox, where this big-data is …

Contributors
Zafarani, Reza, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2015

Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the Amazon Delta Riverine region as data mule nodes is investigated and a robust data routing algorithm based on a fountain code approach is designed to ensure fast and timely data delivery considering unpredictable boat delays, break-downs, and high transmission failures. Then, the scenario of providing healthcare in Amazon Delta Region …

Contributors
Liu, Mengxue, Richa, Andrea W, Johnson, Thienne, et al.
Created Date
2018

Models using feature interactions have been applied successfully in many areas such as biomedical analysis, recommender systems. The popularity of using feature interactions mainly lies in (1) they are able to capture the nonlinearity of the data compared with linear effects and (2) they enjoy great interpretability. In this thesis, I propose a series of formulations using feature interactions for real world problems and develop efficient algorithms for solving them. Specifically, I first propose to directly solve the non-convex formulation of the weak hierarchical Lasso which imposes weak hierarchy on individual features and interactions but can only be approximately solved …

Contributors
Liu, Yashu, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2018

Mobile Cloud computing has shown its capability to support mobile devices for provisioning computing, storage and communication resources. A distributed mobile cloud service system called "POEM" is presented to manage the mobile cloud resource and compose mobile cloud applications. POEM considers resource management not only between mobile devices and clouds, but also among mobile devices. It implements both computation offloading and service composition features. The proposed POEM solution is demonstrated by using OSGi and XMPP techniques. Offloading is one major type of collaborations between mobile device and cloud to achieve less execution time and less energy consumption. Offloading decisions for …

Contributors
Wu, Huijun, Huang, Dijiang, Xue, Guoliang, et al.
Created Date
2016

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process. Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have …

Contributors
Das, Arun, Sen, Arunabha, Xue, Guoliang, et al.
Created Date
2016

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency. This research introduces Modeling, Simulation and Analysis for Software-as-Service …

Contributors
Li, Wu, Tsai, Wei-Tek, Sarjoughian, Hessam, et al.
Created Date
2015

There are many applications where the truth is unknown. The truth values are guessed by different sources. The values of different properties can be obtained from various sources. These will lead to the disagreement in sources. An important task is to obtain the truth from these sometimes contradictory sources. In the extension of computing the truth, the reliability of sources needs to be computed. There are models which compute the precision values. In those earlier models Banerjee et al. (2005) Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and Wu (2011) Zhao and Han (2012) …

Contributors
Jain, Karan, Xue, Guoliang, Sen, Arunabha, et al.
Created Date
2019

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose …

Contributors
Chen, Jianhui, Ye, Jieping, Kumar, Sudhir, et al.
Created Date
2011

The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and data mining tasks. Feature selection aims to reduce dimensionality by selecting a small subset of the features that perform at least as good as the full feature set. Generally, the learning performance, e.g. classification accuracy, and algorithm complexity are used to measure the quality of the algorithm. Recently, the stability …

Contributors
Alelyani, Salem, Liu, Huan, Xue, Guoliang, et al.
Created Date
2013

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this …

Contributors
Mazumder, Anisha, Sen, Arunabha, Richa, Andrea, et al.
Created Date
2016

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless …

Contributors
Fang, Xi, Xue, Guoliang, Yau, Sik-Sang, et al.
Created Date
2013

The rapid urban expansion has greatly extended the physical boundary of our living area, along with a large number of POIs (points of interest) being developed. A POI is a specific location (e.g., hotel, restaurant, theater, mall) that a user may find useful or interesting. When exploring the city and neighborhood, the increasing number of POIs could enrich people's daily life, providing them with more choices of life experience than before, while at the same time also brings the problem of "curse of choices", resulting in the difficulty for a user to make a satisfied decision on "where to go" …

Contributors
Gao, Huiji, Liu, Huan, Xue, Guoliang, et al.
Created Date
2014

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks. Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only …

Contributors
Gollapudi, Narasimha Aditya, Dasgupta, Partha, Xue, Guoliang, et al.
Created Date
2014

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions …

Contributors
Wang, Zhijie, Wang, Zhijie, Xue, Guoliang, et al.
Created Date
2016

The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every action people take online would leave a trail of information which could be recorded, collected and used by malicious attackers. Besides, service providers might collect users’ information and analyze them, which also leads to a privacy breach. Therefore, preserving people’s privacy is very important in the online environment. In this …

Contributors
Zhao, Xinxin, Xue, Guoliang, Ahn, Gail-Joon, et al.
Created Date
2015

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network …

Contributors
Shirazipourazad, Shahrzad, Sen, Arunabha, Sen, Arunabha, et al.
Created Date
2014

Interference constitutes a major challenge for communication networks operating over a shared medium where availability is imperative. This dissertation studies the problem of designing and analyzing efficient medium access protocols which are robust against strong adversarial jamming. More specifically, four medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC) which aim to achieve high throughput despite jamming activities under a variety of network and adversary models are presented. We also propose a self-stabilizing leader election protocol, SELECT, that can effectively elect a leader in the network with the existence of a strong adversary. Our protocols can not only deal …

Contributors
Zhang, Jin, Richa, Andrea W, Scheideler, Christian, et al.
Created Date
2012

Vehicles powered by electricity and alternative-fuels are becoming a more popular form of transportation since they have less of an environmental impact than standard gasoline vehicles. Unfortunately, their success is currently inhibited by the sparseness of locations where the vehicles can refuel as well as the fact that many of the vehicles have a range that is less than those powered by gasoline. These factors together create a "range anxiety" in drivers, which causes the drivers to worry about the utility of alternative-fuel and electric vehicles and makes them less likely to purchase these vehicles. For the new vehicle technologies …

Contributors
Adler, Jonathan David, Mirchandani, Pitu B, Askin, Ronald, et al.
Created Date
2014

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems. In this dissertation, I carry …

Contributors
Li, Qingyang, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2017

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years. Virtualization is the main technology of cloud …

Contributors
Chung, Chun-Jen, Huang, Dijiang, Ahn, Gail-Joon, et al.
Created Date
2015

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. …

Contributors
Zhang, Rui, Zhang, Yanchao, Duman, Tolga Mete, et al.
Created Date
2013

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the …

Contributors
Yu, Ruozhou, Xue, Guoliang, Huang, Dijiang, et al.
Created Date
2019

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for …

Contributors
Thulasiram, Ramesh L., Ye, Jieping, Xue, Guoliang, et al.
Created Date
2011

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is …

Contributors
Yang, Lei, Zhang, Junshan, Tepedelenlioglu, Cihan, et al.
Created Date
2012

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I …

Contributors
Yuan, Lei, Ye, Jieping, Wang, Yalin, et al.
Created Date
2013

Imaging genetics is an emerging and promising technique that investigates how genetic variations affect brain development, structure, and function. By exploiting disorder-related neuroimaging phenotypes, this class of studies provides a novel direction to reveal and understand the complex genetic mechanisms. Oftentimes, imaging genetics studies are challenging due to the relatively small number of subjects but extremely high-dimensionality of both imaging data and genomic data. In this dissertation, I carry on my research on imaging genetics with particular focuses on two tasks---building predictive models between neuroimaging data and genomic data, and identifying disorder-related genetic risk factors through image-based biomarkers. To this …

Contributors
Yang, Tao, Ye, Jieping, Xue, Guoliang, et al.
Created Date
2017

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing …

Contributors
Shi, Jie, Wang, Yalin, Caselli, Richard, et al.
Created Date
2016

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and attain higher performance than ever before. Therefore, power and thermal management have become the significant design considerations for modern embedded devices. Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two well-known hardware capabilities offered by modern embedded processors. However, the power or thermal aware performance optimization is not …

Contributors
Zhang, Sushu, Chatha, Karam S, Cao, Yu, et al.
Created Date
2012

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. …

Contributors
Sun, Xin, Tsai, Wei-Tek, Xue, Guoliang, et al.
Created Date
2016

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep …

Contributors
Sun, Qian, Ye, Jieping, Ye, Jieping, et al.
Created Date
2015

The power and communication networks are highly interdependent and form a part of the critical infrastructure of a country. Similarly, dependencies exist within the networks itself. Owing to cascading failures, interdependent and intradependent networks are extremely susceptible to widespread vulnerabilities. In recent times the research community has shown significant interest in modeling to capture these dependencies. However, many of them are simplistic in nature which limits their applicability to real world systems. This dissertation presents a Boolean logic based model termed as Implicative Interdependency Model (IIM) to capture the complex dependencies and cascading failures resulting from an initial failure of …

Contributors
Banerjee, Joydeep, Sen, Arunabha, Dasgupta, Partha, et al.
Created Date
2017