Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Status
  • Public
Date Range
2011 2019


Non-line-of-sight (NLOS) imaging of objects not visible to either the camera or illumina- tion source is a challenging task with vital applications including surveillance and robotics. Recent NLOS reconstruction advances have been achieved using time-resolved measure- ments. Acquiring these time-resolved measurements requires expensive and specialized detectors and laser sources. In work proposes a data-driven approach for NLOS 3D local- ization requiring only a conventional camera and projector. The localisation is performed using a voxelisation and a regression problem. Accuracy of greater than 90% is achieved in localizing a NLOS object to a 5cm × 5cm × 5cm volume in real …

Contributors
Chandran, Sreenithy, Jayasuriya, Suren, Turaga, Pavan, et al.
Created Date
2019

Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of …

Contributors
Haddad, Bashar Muneer, Karam, Lina, Li, Baoxin, et al.
Created Date
2019

Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery …

Contributors
Gunnam, Sridhar, LiKamWa, Robert, Turaga, Pavan, et al.
Created Date
2018

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements. First, this work presents an application of mixture of experts models for …

Contributors
Dodge, Samuel Fuller, Karam, Lina, Jayasuriya, Suren, et al.
Created Date
2018

Human movement is a complex process influenced by physiological and psychological factors. The execution of movement is varied from person to person, and the number of possible strategies for completing a specific movement task is almost infinite. Different choices of strategies can be perceived by humans as having different degrees of quality, and the quality can be defined with regard to aesthetic, athletic, or health-related ratings. It is useful to measure and track the quality of a person's movements, for various applications, especially with the prevalence of low-cost and portable cameras and sensors today. Furthermore, based on such measurements, feedback …

Contributors
Wang, Qiao, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2018

Speech is generated by articulators acting on a phonatory source. Identification of this phonatory source and articulatory geometry are individually challenging and ill-posed problems, called speech separation and articulatory inversion, respectively. There exists a trade-off between decomposition and recovered articulatory geometry due to multiple possible mappings between an articulatory configuration and the speech produced. However, if measurements are obtained only from a microphone sensor, they lack any invasive insight and add additional challenge to an already difficult problem. A joint non-invasive estimation strategy that couples articulatory and phonatory knowledge would lead to better articulatory speech synthesis. In this thesis, a …

Contributors
Venkataramani, Adarsh Akkshai, Papandreou-Suppappola, Antonia, Bliss, Daniel W, et al.
Created Date
2018

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained. The contributions of this dissertation …

Contributors
Kanberoglu, Berkay, Frakes, David, Turaga, Pavan, et al.
Created Date
2018

When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal experience and their relationship to the broader tango community. In this dissertation I explore creative approaches to enrich the sense of connection, that is, the experience of oneness with a partner and complete immersion in music and dance for Argentine tango dancers by providing agency over musical activities through the …

Contributors
Brown, Courtney Douglass, Paine, Garth, Feisst, Sabine, et al.
Created Date
2017

Computational thinking, the fundamental way of thinking in computer science, including information sourcing and problem solving behind programming, is considered vital to children who live in a digital era. Most of current educational games designed to teach children about coding either rely on external curricular materials or are too complicated to work well with young children. In this thesis project, Guardy, an iOS tower defense game, was developed to help children over 8 years old learn about and practice using basic concepts in programming. The game is built with the SpriteKit, a graphics rendering and animation infrastructure in Apple’s integrated …

Contributors
Wang, Xiaoxiao, Nelson, Brian C., Turaga, Pavan, et al.
Created Date
2017

Light field imaging is limited in its computational processing demands of high sampling for both spatial and angular dimensions. Single-shot light field cameras sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing incoming rays onto a 2D sensor array. While this resolution can be recovered using compressive sensing, these iterative solutions are slow in processing a light field. We present a deep learning approach using a new, two branch network architecture, consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution 4D light field from a single coded 2D image. This network decreases reconstruction time …

Contributors
Gupta, Mayank, Turaga, Pavan, Yang, Yezhou, et al.
Created Date
2017