ASU Electronic Theses and Dissertations
This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.
In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.
Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.
- Zhang, Junshan
- 1 Arizona State University
- 1 Cochran, Douglas
- 1 Hayes, Mark
- 1 Mahanti, Prasun
- 1 Taylor, Thomas
- 1 English
- Image analysis
- 1 Cheap particle velocimetry
- 1 Electrical engineering
- 1 Microfluidics
- 1 Particle Streak Velocimetry
- 1 Particle track
- Dwarf Galaxies as Laboratories of Protogalaxy Physics: Canonical Star Formation Laws at Low Metallicity
- Evolutionary Genetics of CORL Proteins
- Social Skills and Executive Functioning in Children with PCDH-19
- Deep Domain Fusion for Adaptive Image Classification
- Software Defined Pulse-Doppler Radar for Over-The-Air Applications: The Joint Radar-Communications Experiment
This dissertation describes a novel, low cost strategy of using particle streak (track) images for accurate micro-channel velocity field mapping. It is shown that 2-dimensional, 2-component fields can be efficiently obtained using the spatial variation of particle track lengths in micro-channels. The velocity field is a critical performance feature of many microfluidic devices. Since it is often the case that un-modeled micro-scale physics frustrates principled design methodologies, particle based velocity field estimation is an essential design and validation tool. Current technologies that achieve this goal use particle constellation correlation strategies and rely heavily on costly, high-speed imaging hardware. The proposed …
- Contributors
- Mahanti, Prasun, Cochran, Douglas, Taylor, Thomas, et al.
- Created Date
- 2011