Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

This dissertation examines the various factors and processes that have been proposed as explanations for the spread of agriculture in the west Mediterranean. The expansion of the Neolithic in the west Mediterranean (the Impresso-Cardial Neolithic) is characterized by a rapid spread of agricultural subsistence and material culture from the southern portion of the Italian peninsula to the western coast of the Iberian peninsula. To address this unique case, four conceptual models of Neolithic spread have been proposed: the Wave of Advance, the Capillary Spread Model, the Maritime Pioneer Colonization Model and the Dual Model. An agent-based model, the Cardial Spread …

Bergin, Sean, Barton, Michael, Janssen, Marco, et al.
Created Date

This dissertation uses a comparative approach to investigate long-term human- environment interrelationships in times of climate change. It uses Geographical Information Systems and ecological models to reconstruct the Magdalenian (~20,000- 14,000 calibrated years ago) environments of the coastal mountainous zone of Cantabria (Northwest Spain) and the interior valleys of the Dordogne (Southwest France) to contextualize the social networks that could have formed during a time of high climate and resource variability. It simulates the formation of such networks in an agent-based model, which documents the processes underlying the formation of archaeological assemblages, and evaluates the potential impacts of climate-topography interactions …

Gravel-Miguel, Claudine, Barton, C. Michael, Coudart, Anick, et al.
Created Date