Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Status
  • Public
Date Range
2011 2019


The Universe transitioned from a state of neutral hydrogen (HI) shortly after recombination to its present day ionized state, but this transition, the Epoch of Reionization (EoR), has been poorly constrained by observational data. Estimates place the EoR between redshifts 6 < z <13 (330-770 Myr). The interaction of the 21 cm hyperfine ground state emission/absorption-line of HI with the cosmic microwave background (CMB) and the radiation from the first luminous sources in the universe can be used to extract cosmological information about the EoR. Theorists have created global redshifted 21 cm EoR models of this interaction that predict the …

Contributors
Mozdzen, Thomas J., Bowman, Judd D, Scowen, Paul A, et al.
Created Date
2017

Most stars form in groups, and these clusters are themselves nestled within larger associations and stellar complexes. It is not yet clear, however, whether stars cluster on preferred size scales within galaxies, or if stellar groupings have a continuous size distribution. I have developed two methods to select stellar groupings across a wide range of size-scales in order to assess trends in the size distribution and other basic properties of stellar groupings. The first method uses visual inspection of color-magnitude and color-color diagrams of clustered stars to assess whether the compact sources within the potential association are coeval, and thus …

Contributors
Kaleida, Catherine Carol, Scowen, Paul A., Windhorst, Rogier A., et al.
Created Date
2011

In the upcoming decade, powerful new astronomical facilities such as the James Webb Space Telescope (JWST), the Square Kilometer Array (SKA), and ground-based 30-meter telescopes will open up the epoch of reionization to direct astronomical observation. One of the primary tools used to understand the bulk astrophysical properties of the high-redshift universe are empirically-derived star-forming laws, which relate observed luminosity to fundamental astrophysical quantities such as star formation rate. The radio/infrared relation is one of the more mysterious of these relations: despite its somewhat uncertain astrophysical origins, this relation is extremely tight and linear, with 0.3 dex of scatter over …

Contributors
Monkiewicz, Jacqueline, Bowman, Judd, Scowen, Paul, et al.
Created Date
2019

The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and high redshift Lyman break galaxies which are mostly catas- trophic outliers. For a sample of 1138 galaxies with spectroscopic redshifts in the GOODS North and South fields at z < 1.6, the application of the surface luminosity prior reduces the fraction of galaxies with redshift deviation sigma(z) > 0.2 from …

Contributors
Xia, Lifang, Malhotra, Sangeeta, Rhoads, James, et al.
Created Date
2012

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics. In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow …

Contributors
Sarmento, Richard John, Scannapieco, Evan, Windhorst, Rogier, et al.
Created Date
2018

Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the evolution of the minihalo gas. Molecular coolants are important since they allow gas to cool below 10000 K. Therefore, I implement a primordial chemistry and cooling network that tracks the evolution and cooling from these species. I show that the shock from the galaxy outflow produces an abundance of coolants …

Contributors
Gray, William James, Scannapieco, Evan, Starrfield, Sumner, et al.
Created Date
2012

I combine, compare, and contrast the results from two different numerical techniques (grid vs. particle methods) studying multi-scale processes in galaxy and structure formation. I produce a method for recreating identical initial conditions for one method from those of the other, and explore methodologies necessary for making these two methods as consistent as possible. With this, I first study the impact of streaming velocities of baryons with respect to dark matter, present at the epoch of reionization, on the ability for small halos to accrete gas at high redshift. With the inclusion of this stream velocity, I find the central …

Contributors
Richardson, Mark Lawrence, Scannapieco, Evan, Rhoads, James, et al.
Created Date
2014

Learning how properties of galaxies such as star formation, galaxy interactions, chemical composition, and others evolve to produce the modern universe has long been a goal of extragalactic astronomy. In recent years, grism spectroscopy from the Hubble Space Telescope (HST) has provided a means to study these properties with spectroscopy while avoiding the limitations of ground-based observation. In this dissertation, I present several studies wherein I used HST G102 grism spectroscopy from the Faint Infrared Grism Survey (FIGS) to investigate these fundamental properties of galaxies and how they interact and evolve. In the first study, I combined the grism spectra …

Contributors
Pharo, John, Malhotra, Sangeeta, Young, Patrick, et al.
Created Date
2019

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation …

Contributors
Jiang, Tianxing, Malhotra, Sangeeta, Rhoads, James E, et al.
Created Date
2018

High-energy explosive phenomena, Gamma-Ray Bursts (GRBs) and Supernovae (SNe), provide unique laboratories to study extreme physics and potentially open up the new discovery window of Gravitational-wave astronomy. Uncovering the intrinsic variability of GRBs constrains the size of the GRB emission region, and ejecta velocity, in turn provides hints on the nature of GRBs and their progenitors. We develop a novel method which ties together wavelet and structure-function analyses to measure, for the first time, the actual minimum variability timescale, Delta t_min, of GRB light curves. Implementing our technique to the largest sample of GRBs collected by Swift and Fermi instruments …

Contributors
Golkhou, Vahid Zachary, Butler, Nathaniel R., Bowman, Judd, et al.
Created Date
2017