Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Status
  • Public
Date Range
2010 2019


Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019

Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess …

Contributors
Deb, Ranadeep, Ogras, Umit Y, Shill, Holly, et al.
Created Date
2019

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and …

Contributors
Gubash, Gerard Robert, Bliss, Daniel W, Richmond, Christ, et al.
Created Date
2019

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement. To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model. This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. …

Contributors
Srivastava, Gaurav, Seo, Jae-Sun, Chakrabarti, Chaitali, et al.
Created Date
2018

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network. In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time …

Contributors
XIONG, YAN, Chakrabarti, Chaitali, Berisha, Visar, et al.
Created Date
2018

Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel- ligence. The innovations in ANN has led to ground breaking technological advances like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and many more. These were inspired by evolution and working of our brains. Similar to how our brain evolved using a combination of epigenetics and live stimulus,ANN require training to learn patterns.The training usually requires a lot of computation and memory accesses. To realize these systems in real embedded hardware many Energy/Power/Performance issues needs to be solved. The purpose of this research is to focus on methods to study …

Contributors
Chowdary, Hidayatullah, Cao, Yu, Seo, JaeSun, et al.
Created Date
2018

With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to …

Contributors
Animesh, Saurabh, Chakrabarti, Chaitali, Brunhaver, John, et al.
Created Date
2018

Many real-time vision applications require accurate estimation of optical flow. This problem is quite challenging due to extremely high computation and memory requirements. This thesis focuses on designing low complexity dense optical flow algorithms. First, a new method for optical flow that is based on Semi-Global Matching (SGM), a popular dynamic programming algorithm for stereo vision, is presented. In SGM, the disparity of each pixel is calculated by aggregating local matching costs over the entire image to resolve local ambiguity in texture-less and occluded regions. The proposed method, Neighbor-Guided Semi-Global Matching (NG-fSGM) achieves significantly less complexity compared to SGM, by …

Contributors
Xiang, Jiang, Chakrabarti, Chaitali, Karam, Lina, et al.
Created Date
2017

This thesis addresses two problems in digital baseband design of wireless communication systems, namely, those in Internet of Things (IoT) terminals that support long range communications and those in full-duplex systems that are designed for high spectral efficiency. IoT terminals for long range communications are typically based on Orthogonal Frequency-Division Multiple Access (OFDMA) and spread spectrum technologies. In order to design an efficient baseband architecture for such terminals, the workload profiles of both systems are analyzed. Since frame detection unit has by far the highest computational load, a simple architecture that uses only a scalar datapath is proposed. To optimize …

Contributors
Wu, Shunyao, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2017

When one considers the current state of wireless communications, it becomes clear that it is both absolutely amazing and something of a mess. Present communications standards are the result of local optimizations over time that led to a confusing set of suboptimal and fragile wireless standards. Starting from a clean sheet of paper, Bliss Laboratory for Information, Signals, and Systems (BLISS) is considering a fluid set of communications standards co-optimized with flexible but power-efficient computational implementations that will enable the next revolution of wireless communications. The main aim is to enable much higher data rates and much lower data rates …

Contributors
Rupakula, Venkata Sai Karteek, Bliss, Daniel W, Chakrabarti, Chaitali, et al.
Created Date
2017