Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Status
  • Public
Date Range
2010 2019


There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily …

Contributors
Deshpande, Sunil, Rivera, Daniel E., Si, Jennie, et al.
Created Date
2011

Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine makes. NASA has designed and publicized a standard benchmark problem for propulsion engine gas path diagnostic that enables comparisons among different engine diagnostic approaches. Some traditional model-based approaches and novel purely data-driven approaches such as machine learning, have been applied to this problem. This study focuses on a different machine …

Contributors
Wu, Qiyu, Si, Jennie, Wu, Teresa, et al.
Created Date
2015

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is …

Contributors
Joshi, Rakesh, Tsakalis, Konstantinos, Rodriguez, Armando, et al.
Created Date
2013

Stroke remains a leading cause of adult disability in the United States. In recent studies, chronic vagus nerve stimulation (VNS) has been proven to enhance functional recovery when paired with motor rehabilitation training after stroke. Other studies have also demonstrated that delivering VNS during the onset of a stroke may elicit some neuroprotective effects as observed in remaining neural tissue and motor function. While these studies have demonstrated the benefits of VNS as a treatment or therapy in combatting stroke damage, the mechanisms responsible for these effects are still not well understood or known. The aim of this research was …

Contributors
Okada, Kristen Yuri, Kleim, Jeffrey A, Si, Jennie, et al.
Created Date
2019

Recent new experiments showed that wide-field imaging at millimeter scale is capable of recording hundreds of neurons in behaving mice brain. Monitoring hundreds of individual neurons at a high frame rate provides a promising tool for discovering spatiotemporal features of large neural networks. However, processing the massive data sets is impossible without automated procedures. Thus, this thesis aims at developing a new tool to automatically segment and track individual neuron cells. The new method used in this study employs two major ideas including feature extraction based on power spectral density of single neuron temporal activity and clustering tree to separate …

Contributors
Wu, Ruofan, Si, Jennie, Sadleir, Rosalind, et al.
Created Date
2016

Proportional-Integral-Derivative (PID) controllers are a versatile category of controllers that are commonly used in the industry as control systems due to the ease of their implementation and low cost. One problem that continues to intrigue control designers is the matter of finding a good combination of the three parameters - P, I and D of these controllers so that system stability and optimum performance is achieved. Also, a certain amount of robustness to the process is expected from the PID controllers. In the past, many different methods for tuning PID parameters have been developed. Some notable techniques are the Ziegler-Nichols, …

Contributors
Shafique, Md Ashfaque Bin, Tsakalis, Konstantinos S., Rodriguez, Armando A., et al.
Created Date
2011

To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural patterns while he improved his task performance accuracy from chance to 80% or higher. Specifically, simultaneous multi-channel single unit neural recordings from the rat's agranular medial (AGm) and Agranular lateral (AGl) cortices were analyzed using joint peristimulus time histogram (JPSTHs), which effectively unveils firing coincidences in neural action potentials. My …

Contributors
Cheng, Bing, Si, Jennie, Chae, Junseok, et al.
Created Date
2014

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle …

Contributors
Chopra, Dhruv, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2013

The problem of systematically designing a control system continues to remain a subject of intense research. In this thesis, a very powerful control system design environment for Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO) plants is presented. The environment has been designed to address a broad set of closed loop metrics and constraints; e.g. weighted H-infinity closed loop performance subject to closed loop frequency and/or time domain constraints (e.g. peak frequency response, peak overshoot, peak controls, etc.). The general problem considered - a generalized weighted mixed-sensitivity problem subject to constraints - permits designers to directly address and tradeoff multivariable properties at …

Contributors
Puttannaiah, Karan, Rodriguez, Armando A, Tsakalis, Konstantinos S, et al.
Created Date
2013

This dissertation is focused on developing an algorithm to provide current state estimation and future state predictions for biomechanical human walking features. The goal is to develop a system which is capable of evaluating the current action a subject is taking while walking and then use this to predict the future states of biomechanical features. This work focuses on the exploration and analysis of Interaction Primitives (Amor er al, 2014) and their relevance to biomechanical prediction for human walking. Built on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize an EKF SLAM algorithm to localize and map a distribution …

Contributors
Clark, Geoffrey Mitchell, Ben Amor, Heni, Si, Jennie, et al.
Created Date
2018