Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an …

Contributors
Villarreal, James Kendall, Squires, Kyle, Lee, Taewoo, et al.
Created Date
2011

The heat and mass transfer phenomena in micro-scale for the mass transfer phenomena on drug in cylindrical matrix system, the simulation of oxygen/drug diffusion in a three dimensional capillary network, and a reduced chemical kinetic modeling of gas turbine combustion for Jet propellant-10 have been studied numerically. For the numerical analysis of the mass transfer phenomena on drug in cylindrical matrix system, the governing equations are derived from the cylindrical matrix systems, Krogh cylinder model, which modeling system is comprised of a capillary to a surrounding cylinder tissue along with the arterial distance to veins. ADI (Alternative Direction Implicit) scheme …

Contributors
Bae, Kang-Sik, Lee, Taewoo, Huang, Huei-Ping, et al.
Created Date
2012

The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim …

Contributors
Kanjiyani, Shezan, Lee, Taewoo, Mirzamoghadam, Alexander, et al.
Created Date
2016

The study of deflagration to detonation transition (DDT) in explosives is of prime importance with regards to insensitive munitions (IM). Critical damage owing to thermal or shock stimuli could translate to significant loss of life and material. The present study models detonation and deflagration of a commonly used granular explosive: cyclotetramethylene-tetranitramine, HMX. A robust literature review is followed by computational modeling of gas gun and DDT tube test data using the Sandia National Lab three-dimensional multi-material Eulerian hydrocode CTH. This dissertation proposes new computational practices and models that aid in predicting shock stimulus IM response. CTH was first used to …

Contributors
Mahon, Kelly Susan, Lee, Taewoo, Herrmann, Marcus, et al.
Created Date
2015

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression …

Contributors
Summers, Matt H., Lee, Taewoo, Chen, Kangping, et al.
Created Date
2013

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it …

Contributors
Moradi, Ali, Lee, Taewoo, Herrmann, Marcus, et al.
Created Date
2013

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the …

Contributors
Hargrave, Kevin, Lee, Taewoo, Huang, Huei-Ping, et al.
Created Date
2013