Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


This thesis discusses the equilibrium conditions and static stability of a rotorcraft kite with a single main tether flying in steady wind conditions. A dynamic model with five degrees of freedom is derived using Lagrangian formulation, which explicitly avoids any constraint force in the equations of motion. The longitudinal static stability of the steady flight under constant wind conditions is analyzed analytically from the equilibrium conditions. The rotorcraft kite orientation and tether angle are correlated through the equation Γ=δ-ϑ, a necessary condition for equilibrium. A rotorcraft kite design with 3kg mass and 1.25m rotor radius is found to be longitudinally …

Contributors
Hernandez, Brendan, Wells, Valana, Garrett, Frederick, et al.
Created Date
2017

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing …

Contributors
Martinjako, Jeremy Chey, Trimble, Steven, Dahm, Werner, et al.
Created Date
2014

The focus of this research is to investigate methods for material substitution for the purpose of re-engineering legacy systems that involves incomplete information about form, fit and function of replacement parts. The primary motive is to extract as much useful information about a failed legacy part as possible and use fuzzy logic rules for identifying the unknown parameter values. Machine elements can fail by any number of failure modes but the most probable failure modes based on the service condition are considered critical failure modes. Three main parameters are of key interest in identifying the critical failure mode of the …

Contributors
Balaji, Srinath, Shah, Jami, Davidson, Joseph, et al.
Created Date
2011

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system. In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in its hover …

Contributors
RAGHURAMAN, VIGNESH, Tsakalis, Konstantinos, Rodriguez, Armando, et al.
Created Date
2018

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments. One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows: (1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control, (2) an on-board MEMS inertial-measurement-unit (IMU) …

Contributors
Lu, Shi, Rodriguez, Armando A., Tsakalis, Konstantinos, et al.
Created Date
2018

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the …

Contributors
Lin, Yucong, Saripalli, Srikanth, Scowen, Paul, et al.
Created Date
2015

This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to …

Contributors
Sridharan, Srikanth, Rodriguez, Armando A, Mittelmann, Hans D, et al.
Created Date
2014

This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between …

Contributors
Hasan, Zeaid, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2014

Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods …

Contributors
Borkowski, Luke, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2015

The focus of this investigation includes three aspects. First, the development of nonlinear reduced order modeling techniques for the prediction of the response of complex structures exhibiting "large" deformations, i.e. a geometrically nonlinear behavior, and modeled within a commercial finite element code. The present investigation builds on a general methodology, successfully validated in recent years on simpler panel structures, by developing a novel identification strategy of the reduced order model parameters, that enables the consideration of the large number of modes needed for complex structures, and by extending an automatic strategy for the selection of the basis functions used to …

Contributors
Perez, Ricardo, Mignolet, Marc, Oswald, Jay, et al.
Created Date
2012