Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2012 2018


In this dissertation, we present a H-infinity based multivariable control design methodology that can be used to systematically address design specifications at distinct feedback loop-breaking points. It is well understood that for multivariable systems, obtaining good/acceptable closed loop properties at one loop-breaking point does not mean the same at another. This is especially true for multivariable systems that are ill-conditioned (having high condition number and/or relative gain array and/or scaled condition number). We analyze the tradeoffs involved in shaping closed loop properties at these distinct loop-breaking points and illustrate through examples the existence of pareto optimal points associated with them. …

Contributors
Puttannaiah, Karan, Rodriguez, Armando A., Berman, Spring M., et al.
Created Date
2018

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic …

Contributors
Dickeson, Jeffrey James, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2012

With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and visualize them. The high fidelity environment is used to validate miss distance analysis with the results presented in relevant GNC textbooks and to examine how the kill zone varies with critical engagement parameters; e.g. initial engagement altitude, missile Mach, and missile maximum acceleration. A ray-based binary search algorithm is used to …

Contributors
Renganathan, Venkatraman, Rodriguez, Armando A, Artemiadis, Panagiotis, et al.
Created Date
2016

VTOL drones were designed and built at the beginning of the 20th century for military applications due to easy take-off and landing operations. Many companies like Lockheed, Convair, NASA and Bell Labs built their own aircrafts but only a few from them came in to the market. Usually, flight automation starts from first principles modeling which helps in the controller design and dynamic analysis of the system. In this project, a VTOL drone with a shape similar to a Convair XFY-1 is studied and the primary focus is stabilizing and controlling the flight path of the drone in its hover …

Contributors
RAGHURAMAN, VIGNESH, Tsakalis, Konstantinos, Rodriguez, Armando, et al.
Created Date
2018

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments. One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows: (1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control, (2) an on-board MEMS inertial-measurement-unit (IMU) …

Contributors
Lu, Shi, Rodriguez, Armando A., Tsakalis, Konstantinos, et al.
Created Date
2018

As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery …

Contributors
Strele, Thomas Arthur, Nam, Changho, Kannan, Arunachalanadar M, et al.
Created Date
2016

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and …

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Allee, David, et al.
Created Date
2017

There is a growing need for interplanetary travel technology development. There are hence plans to build deep space human habitats, communication relays, and fuel depots. These can be classified as large space structures. To build large structures, it is essential that these are modular in nature. With modularization of structures, it becomes essential that interconnection of modules is developed. Docking systems enable interconnection of modules. The state-of-the-art technology in docking systems is the Power Data Grapple Fixture (PDGF), used on the International Space Station by the Canadarm2 robotic arm to grapple, latch onto and provide power to the object it …

Contributors
Ravindran, Aaditya, Thangavelutham, Jekanthan, Barnaby, Hugh James, et al.
Created Date
2018