ASU Electronic Theses and Dissertations
This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.
In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.
Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.
- 1 English
- 1 Public
- Aerospace engineering
- Robotics
- Electrical engineering
- 1 Indoor Tracking System
- 1 Quadrotor Actuator Dynamics
- 1 Quadrotor Hardware Design
- 1 Quadrotor Model Linearization
- 1 Quadrotor Software Design
- more
- 1 Quadrotor kinematics
- Dwarf Galaxies as Laboratories of Protogalaxy Physics: Canonical Star Formation Laws at Low Metallicity
- Evolutionary Genetics of CORL Proteins
- Social Skills and Executive Functioning in Children with PCDH-19
- Deep Domain Fusion for Adaptive Image Classification
- Software Defined Pulse-Doppler Radar for Over-The-Air Applications: The Joint Radar-Communications Experiment
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments. One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows: (1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control, (2) an on-board MEMS inertial-measurement-unit (IMU) …
- Contributors
- Lu, Shi, Rodriguez, Armando A., Tsakalis, Konstantinos, et al.
- Created Date
- 2018