Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for ...

Contributors
Walker, Phillip, Tang, Wenbo, Kostelich, Eric, et al.
Created Date
2018

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several ...

Contributors
Evilsizor, Stephen, Lanchier, Nicolas, Kang, Yun, et al.
Created Date
2016

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which ...

Contributors
Ramachandran, Ragesh Kumar, Berman, Spring M, Mignolet, Marc, et al.
Created Date
2018

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial species and by applying the dynamical systems theory the effect of flow topology on the variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient in the turbulent flow, and analyzing the evolution of reaction associated with the observed high and low stretching regions. The Gaussian nutrient patch is released at different locations and the corresponding nutrient uptake is obtained. The variable stretching characteristics of the flow ...

Contributors
George, Jino, Tang, Wenbo, Peet, Yulia, et al.
Created Date
2017

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are ...

Contributors
Denker, Dennis, Gelb, Anne, Archibald, Richard, et al.
Created Date
2016

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a ...

Contributors
Edme, Soho, Wirkus, Stephen, Castillo-Chavez, Carlos, et al.
Created Date
2011

Diabetes is a disease characterized by reduced insulin action and secretion, leading to elevated blood glucose. In the 1990s, studies showed that intravenous injection of fatty acids led to a sharp negative response in insulin action that subsided hours after the injection. The molecule associated with diminished insulin signalling response was a byproduct of fatty acids, diacylglycerol. This dissertation is focused on the formulation of a model built around the known mechanisms of glucose and fatty acid storage and metabolism within myocytes, as well as downstream effects of diacylglycerol on insulin action. Data from euglycemic-hyperinsulinemic clamp with fatty acid infusion ...

Contributors
Burkow, Daniel Harrison, Li, Jiaxu, Castillo-Chavez, Carlos, et al.
Created Date
2017

Earth-system models describe the interacting components of the climate system and technological systems that affect society, such as communication infrastructures. Data assimilation addresses the challenge of state specification by incorporating system observations into the model estimates. In this research, a particular data assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is applied to the ionosphere, which is a domain of practical interest due to its effects on infrastructures that depend on satellite communication and remote sensing. This dissertation consists of three main studies that propose strategies to improve space- weather specification during ionospheric extreme events, but are generally ...

Contributors
Durazo, Juan Alberto, Kostelich, Eric J., Mahalov, Alex, et al.
Created Date
2018

The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of ...

Contributors
Chowell, Diego, Castillo-Chavez, Carlos, Anderson, Karen S, et al.
Created Date
2016

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection. A deterministic mathematical model of HIV transmission is developed to evaluate the public-health impact of oral PrEP interventions, and to compare PrEP effectiveness with respect to different evaluation methods. The effects of demographic, behavioral, and epidemic parameters on the PrEP impact are studied in a multivariate sensitivity analysis. Most of ...

Contributors
Zhao, Yuqin, Kuang, Yang, Taylor, Jesse, et al.
Created Date
2014