Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T & E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non–conservation activities on multi-use federal lands is socially optimal. A bioeconomic model is used to identify scenarios where ESA–imposed regulations emerge as optimal strategies and to facilitate discussion on feasible long–term strategies in light of the ongoing public land–use debate. Results suggest that banning harmful activities is a preferred strategy when valued species are in ...

Contributors
Salau, Kehinde Rilwan, Janssen, Marco A, Fenichel, Eli P, et al.
Created Date
2013

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which ...

Contributors
Ramachandran, Ragesh Kumar, Berman, Spring M, Mignolet, Marc, et al.
Created Date
2018