Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2019


Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their aesthetic quality instead of binary-categorizing them. Furthermore, in such applications, it may be possible that all images belong to the same category. Hence determining the aesthetic ranking of the images is more appropriate. To this end, a novel problem of ranking images with respect to their aesthetic quality is formulated …

Contributors
Gattupalli, Jaya Vijetha R., Li, Baoxin, Davulcu, Hasan, et al.
Created Date
2016

Feedback represents a vital component of the learning process and is especially important for Computer Science students. With class sizes that are often large, it can be challenging to provide individualized feedback to students. Consistent, constructive, supportive feedback through a tutoring companion can scaffold the learning process for students. This work contributes to the construction of a tutoring companion designed to provide this feedback to students. It aims to bridge the gap between the messages the compiler delivers, and the support required for a novice student to understand the problem and fix their code. Particularly, it provides support for students …

Contributors
Day, Melissa, Gonzalez-Sanchez, Javier, Bansal, Ajay, et al.
Created Date
2019

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right …

Contributors
Budukh, Tejas Ulhas, Baral, Chitta, Vanlehn, Kurt, et al.
Created Date
2013

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite planning, I focus on a prominent model named Annotated PDDL and it's related application of robust planning. For this model, I try to identify a method of leveraging additional domain information (available in the form of successful plan traces). I use this information to refine the set of possible domains to generate more robust plans (as compared to the original …

Contributors
Sreedharan, Sarath, Kambhampati, Subbarao, Zhang, Yu, et al.
Created Date
2016

For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model when it is represented by performance of the teachable agent. The feedback system represents performance of the teachable agent, and not of a student. Data in the feedback system is thus updated according to a student's understanding of the subject. This provides students an opportunity to enhance their understanding of …

Contributors
Upadhyay, Abha, Walker, Erin, Nelson, Brian, et al.
Created Date
2016

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide …

Contributors
Bartholomew, Michael James, Lee, Joohyung, Bazzi, Rida, et al.
Created Date
2016

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions. In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found. Because these answers must be defined based on something, it is better …

Contributors
Vo, Nguyen Ha, Baral, Chitta, Lee, Joohyung, et al.
Created Date
2015

Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance, they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the memory and computation cost of keyword detection and speech recognition networks (or DNNs) are presented. The first technique is based on representing all weights and biases by a small number of bits and mapping all nodal computations into fixed-point ones with minimal degradation in the accuracy. Experiments conducted on the …

Contributors
Arunachalam, Sairam, Chakrabarti, Chaitali, Seo, Jae-sun, et al.
Created Date
2016

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities …

Contributors
Chakraborty, Shayok, Panchanathan, Sethuraman, Balasubramanian, Vineeth N., et al.
Created Date
2013

Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue task in an uncertain virtual environment. Conditions are tested emulating a remotely controlled robot versus an intelligent one. Differences in performance, situation awareness, trust, workload, and communications are measured. The Intelligent robot condition resulted in higher levels of performance and operator situation awareness (SA). Dissertation/Thesis

Contributors
Bartlett, Cade Earl, Cooke, Nancy J, Kambhampati, Subbarao, et al.
Created Date
2015

As we migrate into an era of personalized medicine, understanding how bio-molecules interact with one another to form cellular systems is one of the key focus areas of systems biology. Several challenges such as the dynamic nature of cellular systems, uncertainty due to environmental influences, and the heterogeneity between individual patients render this a difficult task. In the last decade, several algorithms have been proposed to elucidate cellular systems from data, resulting in numerous data-driven hypotheses. However, due to the large number of variables involved in the process, many of which are unknown or not measurable, such computational approaches often …

Contributors
Ramesh, Archana, Kim, Seungchan, Langley, Patrick W, et al.
Created Date
2012

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions …

Contributors
Yildirim, Mehmet Yigit, Davulcu, Hasan, Bakkaloglu, Bertan, et al.
Created Date
2019

Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the …

Contributors
MIshra, Aditya Prasad, Kambhampati, Subbarao, Chiou, Erin, et al.
Created Date
2019

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been …

Contributors
Singh, Shibani, Wang, Yalin, Li, Baoxin, et al.
Created Date
2017

Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. This thesis presents a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for temporal dimensionality reduction and a novel temporal clustering layer for cluster assignment. Then it jointly optimizes the clustering objective and the dimensionality reduction objective. Based on requirement and application, the temporal clustering layer can be customized with any temporal similarity metric. Several similarity metrics and state-of-the-art algorithms are considered and …

Contributors
Madiraju, NaveenSai, Liang, Jianming, Wang, Yalin, et al.
Created Date
2018

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations …

Contributors
Alashri, Saud, Davulcu, Hasan, Desouza, Kevin C., et al.
Created Date
2018

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, …

Contributors
Gore, Chinmay Chandrashekhar, Davulcu, Hasan, Hsiao, Ihan, et al.
Created Date
2017

Rapid growth of internet and connected devices ranging from cloud systems to internet of things have raised critical concerns for securing these systems. In the recent past, security attacks on different kinds of devices have evolved in terms of complexity and diversity. One of the challenges is establishing secure communication in the network among various devices and systems. Despite being protected with authentication and encryption, the network still needs to be protected against cyber-attacks. For this, the network traffic has to be closely monitored and should detect anomalies and intrusions. Intrusion detection can be categorized as a network traffic classification …

Contributors
Ponneganti, Ramu, Yau, Stephen, Richa, Andrea, et al.
Created Date
2019

Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago. Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social …

Contributors
Morstatter, Fred, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2017

Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear variation patterns using deep learning autoencoders is proposed. The approach provides a functional mapping from a low-dimensional representation to the original spatially-dense data that is both interpretable and efficient with respect to preserving information. Experimental results indicate that deep learning autoencoders outperform manifold learning and principal component analysis in reproducing …

Contributors
Howard, Phillip Ryan, Runger, George, Montgomery, Douglas, et al.
Created Date
2016

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source …

Contributors
Demakethepalli Venkateswara, Hemanth, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2017

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method …

Contributors
Magge Ranganatha, Arjun, Syrotiuk, Violet R, Baral, Chitta, et al.
Created Date
2016

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of …

Contributors
Chakraborti, Tathagata, Kambhampati, Subbarao, Talamadupula, Kartik, et al.
Created Date
2018

Achieving human level intelligence is a long-term goal for many Artificial Intelligence (AI) researchers. Recent developments in combining deep learning and reinforcement learning helped us to move a step forward in achieving this goal. Reinforcement learning using a delayed reward mechanism is an approach to machine intelligence which studies decision making with control and how a decision making agent can learn to act optimally in an environment-unaware conditions. Q-learning is one of the model-free reinforcement directed learning strategies which uses temporal differences to estimate the performances of state-action pairs called Q values. A simple implementation of Q-learning algorithm can be …

Contributors
Gankidi, Pranay Reddy, Thangavelautham, Jekanthan, Ren, Fengbo, et al.
Created Date
2016

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory …

Contributors
Ma, Yufei, Vrudhula, Sarma, Seo, Jae-sun, et al.
Created Date
2018

Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks such as pharmacovigilance via the use of Natural Language Processing (NLP) techniques. One of the critical steps in information extraction pipelines is Named Entity Recognition (NER), where the mentions of entities such as diseases are located in text and their entity type are identified. However, the language in social media is highly informal, and user-expressed health-related concepts are often non-technical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and advanced …

Contributors
Nikfarjam, Azadeh, Gonzalez, Graciela, Greenes, Robert, et al.
Created Date
2016

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing …

Contributors
Narayanan, Vignesh, Kambhampati, Subbarao, Zhang, Yu, et al.
Created Date
2015

Type 1 diabetes (T1D) is a chronic disease that affects 1.25 million people in the United States. There is no known cure and patients must self-manage the disease to avoid complications resulting from blood glucose (BG) excursions. Patients are more likely to adhere to treatments when they incorporate lifestyle preferences. Current technologies that assist patients fail to consider two factors that are known to affect BG: exercise and alcohol. The hypothesis is postprandial blood glucose levels of adult patients with T1D can be improved by providing insulin bolus or carbohydrate recommendations that account for meal and alcohol carbohydrates, glycemic excursion, …

Contributors
Groat, Danielle, Grando, Maria Adela, Kaufman, David, et al.
Created Date
2017

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP). In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on …

Contributors
Molina, Daniel Antonio, Srivastava, Siddharth, Li, Baoxin, et al.
Created Date
2019

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement. To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model. This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. …

Contributors
Srivastava, Gaurav, Seo, Jae-Sun, Chakrabarti, Chaitali, et al.
Created Date
2018

Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to …

Contributors
Aditya, Somak, Baral, Chitta, Yang, Yezhou, et al.
Created Date
2018

As the size and scope of valuable datasets has exploded across many industries and fields of research in recent years, an increasingly diverse audience has sought out effective tools for their large-scale data analytics needs. Over this period, machine learning researchers have also been very prolific in designing improved algorithms which are capable of finding the hidden structure within these datasets. As consumers of popular Big Data frameworks have sought to apply and benefit from these improved learning algorithms, the problems encountered with the frameworks have motivated a new generation of Big Data tools to address the shortcomings of the …

Contributors
Krouse, Brian Richard, Ye, Jieping, Liu, Huan, et al.
Created Date
2014

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes. Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo …

Contributors
Li, Jinjin, Karam, Lina, Chakrabarti, Chaitali, et al.
Created Date
2017

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will …

Contributors
Wu, Liang, Liu, Huan, Tong, Hanghang, et al.
Created Date
2019

Multimodal Representation Learning is a multi-disciplinary research field which aims to integrate information from multiple communicative modalities in a meaningful manner to help solve some downstream task. These modalities can be visual, acoustic, linguistic, haptic etc. The interpretation of ’meaningful integration of information from different modalities’ remains modality and task dependent. The downstream task can range from understanding one modality in the presence of information from other modalities, to that of translating input from one modality to another. In this thesis the utility of multimodal representation learning for understanding one modality vis-à-vis Image Understanding for Visual Reasoning given corresponding information …

Contributors
Saha, Rudra, Yang, Yezhou, Singh, Maneesh Kumar, et al.
Created Date
2018

Answer Set Programming (ASP) is one of the main formalisms in Knowledge Representation (KR) that is being widely applied in a large number of applications. While ASP is effective on Boolean decision problems, it has difficulty in expressing quantitative uncertainty and probability in a natural way. Logic Programs under the answer set semantics and Markov Logic Network (LPMLN) is a recent extension of answer set programs to overcome the limitation of the deterministic nature of ASP by adopting the log-linear weight scheme of Markov Logic. This thesis investigates the relationships between LPMLN and two other extensions of ASP: weak constraints …

Contributors
Yang, Zhun, Lee, Joohyung, Baral, Chitta, et al.
Created Date
2017

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking have traditionally shown promising results in improving the predictive accuracy in classification. These techniques have recently been widely used in various domains and applications owing to the improvements in computational efficiency and distributed computing advances. However, with the advent of wide variety of applications of machine learning techniques to class imbalance problems, further focus is needed to evaluate, improve and optimize other performance measures such as sensitivity (true positive rate) and specificity (true negative rate) in classification. This thesis demonstrates a novel approach to evaluate and optimize the performance measures (specifically …

Contributors
Bahl, Neeraj Dharampal, Bansal, Ajay, Amresh, Ashish, et al.
Created Date
2017

Reinforcement learning (RL) is a powerful methodology for teaching autonomous agents complex behaviors and skills. A critical component in most RL algorithms is the reward function -- a mathematical function that provides numerical estimates for desirable and undesirable states. Typically, the reward function must be hand-designed by a human expert and, as a result, the scope of a robot's autonomy and ability to safely explore and learn in new and unforeseen environments is constrained by the specifics of the designed reward function. In this thesis, I design and implement a stateful collision anticipation model with powerful predictive capability based upon …

Contributors
Richardson, Trevor W, Ben Amor, Heni, Yang, Yezhou, et al.
Created Date
2018

Automated planning problems classically involve finding a sequence of actions that transform an initial state to some state satisfying a conjunctive set of goals with no temporal constraints. But in many real-world problems, the best plan may involve satisfying only a subset of goals or missing defined goal deadlines. For example, this may be required when goals are logically conflicting, or when there are time or cost constraints such that achieving all goals on time may be too expensive. In this case, goals and deadlines must be declared as soft. I call these partial satisfaction planning (PSP) problems. In this …

Contributors
Benton, J., Kambhampati, Subbarao, Baral, Chitta, et al.
Created Date
2012

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to …

Contributors
Talamadupula, Kartik, Kambhampati, Subbarao, Baral, Chitta, et al.
Created Date
2014

Current work in planning assumes that user preferences and/or domain dynamics are completely specified in advance, and aims to search for a single solution plan to satisfy these. In many real world scenarios, however, providing a complete specification of user preferences and domain dynamics becomes a time-consuming and error-prone task. More often than not, a user may provide no knowledge or at best partial knowledge of her preferences with respect to a desired plan. Similarly, a domain writer may only be able to determine certain parts, not all, of the model of some actions in a domain. Such modeling issues …

Contributors
Nguyen, Tuan Anh, Kambhampati, Subbarao, Baral, Chitta, et al.
Created Date
2014

With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes. This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of …

Contributors
Lubold, Nichola Anne, Walker, Erin, Pon-Barry, Heather, et al.
Created Date
2018

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is …

Contributors
Ravikumar, Srijith, Kambhampati, Subbarao, Davulcu, Hasan, et al.
Created Date
2013

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual. The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. …

Contributors
Seshasayee, Sudarshan Prashanth, Sha, Xin Wei, Turaga, Pavan, et al.
Created Date
2016

Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well …

Contributors
Nunes, Eric, Shakarian, Paulo, Ahn, Gail-Joon, et al.
Created Date
2018

Reasoning about actions forms the basis of many tasks such as prediction, planning, and diagnosis in a dynamic domain. Within the reasoning about actions community, a broad class of languages, called action languages, has been developed together with a methodology for their use in representing and reasoning about dynamic domains. With a few notable exceptions, the focus of these efforts has largely centered around single-agent systems. Agents rarely operate in a vacuum however, and almost in parallel, substantial work has been done within the dynamic epistemic logic community towards understanding how the actions of an agent may effect not just …

Contributors
Gelfond, Gregory, Baral, Chitta, Kambhampati, Subbarao, et al.
Created Date
2018

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are …

Contributors
Loney, Nikhil, Lee, Joohyung, Fainekos, Georgios, et al.
Created Date
2017

Biological organisms are made up of cells containing numerous interconnected biochemical processes. Diseases occur when normal functionality of these processes is disrupted, manifesting as disease symptoms. Thus, understanding these biochemical processes and their interrelationships is a primary task in biomedical research and a prerequisite for activities including diagnosing diseases and drug development. Scientists studying these interconnected processes have identified various pathways involved in drug metabolism, diseases, and signal transduction, etc. High-throughput technologies, new algorithms and speed improvements over the last decade have resulted in deeper knowledge about biological systems, leading to more refined pathways. Such pathways tend to be large …

Contributors
Anwar, Saadat, Baral, Chitta, Inoue, Katsumi, et al.
Created Date
2014

To ensure system integrity, robots need to proactively avoid any unwanted physical perturbation that may cause damage to the underlying hardware. In this thesis work, we investigate a machine learning approach that allows robots to anticipate impending physical perturbations from perceptual cues. In contrast to other approaches that require knowledge about sources of perturbation to be encoded before deployment, our method is based on experiential learning. Robots learn to associate visual cues with subsequent physical perturbations and contacts. In turn, these extracted visual cues are then used to predict potential future perturbations acting on the robot. To this end, we …

Contributors
Sur, Indranil, Amor, Heni B, Fainekos, Georgios, et al.
Created Date
2017

Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system …

Contributors
Wang, Yuan, Dasgupta, Partha, Davulcu, Hasan, et al.
Created Date
2015

Turing test has been a benchmark scale for measuring the human level intelligence in computers since it was proposed by Alan Turing in 1950. However, for last 60 years, the applications such as ELIZA, PARRY, Cleverbot and Eugene Goostman, that claimed to pass the test. These applications are either based on tricks to fool humans on a textual chat based test or there has been a disagreement between AI communities on them passing the test. This has led to the school of thought that it might not be the ideal test for predicting the human level intelligence in machines. Consequently, …

Contributors
Sharma, Arpit, Baral, Chita, Lee, Joohyung, et al.
Created Date
2014

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to …

Contributors
Sistla, Ragini, Zhao, Ming, Zhao, Ming, et al.
Created Date
2018

This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical …

Contributors
Demir, Mustafa, Cooke, Nancy J, Bekki, Jennifer, et al.
Created Date
2017

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can …

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements. First, this work presents an application of mixture of experts models for …

Contributors
Dodge, Samuel Fuller, Karam, Lina, Jayasuriya, Suren, et al.
Created Date
2018

Twitter is a micro-blogging platform where the users can be social, informational or both. In certain cases, users generate tweets that have no "hashtags" or "@mentions"; we call it an orphaned tweet. The user will be more interested to find more "context" of an orphaned tweet presumably to engage with his/her friend on that topic. Finding context for an Orphaned tweet manually is challenging because of larger social graph of a user , the enormous volume of tweets generated per second, topic diversity, and limited information from tweet length of 140 characters. To help the user to get the context …

Contributors
Vijayakumar, Manikandan, Kambhampati, Subbarao, Liu, Huan, et al.
Created Date
2014

In recent years, several methods have been proposed to encode sentences into fixed length continuous vectors called sentence representation or sentence embedding. With the recent advancements in various deep learning methods applied in Natural Language Processing (NLP), these representations play a crucial role in tasks such as named entity recognition, question answering and sentence classification. Traditionally, sentence vector representations are learnt from its constituent word representations, also known as word embeddings. Various methods to learn the distributed representation (embedding) of words have been proposed using the notion of Distributional Semantics, i.e. “meaning of a word is characterized by the company …

Contributors
Rath, Trideep, Baral, Chitta, Li, Baoxin, et al.
Created Date
2017