Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2012 2019


The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source …

Contributors
Demakethepalli Venkateswara, Hemanth, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2017

Feature representations for raw data is one of the most important component in a machine learning system. Traditionally, features are \textit{hand crafted} by domain experts which can often be a time consuming process. Furthermore, they do not generalize well to unseen data and novel tasks. Recently, there have been many efforts to generate data-driven representations using clustering and sparse models. This dissertation focuses on building data-driven unsupervised models for analyzing raw data and developing efficient feature representations. Simultaneous segmentation and feature extraction approaches for silicon-pores sensor data are considered. Aggregating data into a matrix and performing low rank and sparse …

Contributors
Sattigeri, Prasanna, Spanias, Andreas, Thornton, Trevor, et al.
Created Date
2014

For the past three decades, the design of an effective strategy for generating poetry that matches that of a human’s creative capabilities and complexities has been an elusive goal in artificial intelligence (AI) and natural language generation (NLG) research, and among linguistic creativity researchers in particular. This thesis presents a novel approach to fixed verse poetry generation using neural word embeddings. During the course of generation, a two layered poetry classifier is developed. The first layer uses a lexicon based method to classify poems into types based on form and structure, and the second layer uses a supervised classification method …

Contributors
Magge Ranganatha, Arjun, Syrotiuk, Violet R, Baral, Chitta, et al.
Created Date
2016

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of …

Contributors
Chakraborti, Tathagata, Kambhampati, Subbarao, Talamadupula, Kartik, et al.
Created Date
2018

Achieving human level intelligence is a long-term goal for many Artificial Intelligence (AI) researchers. Recent developments in combining deep learning and reinforcement learning helped us to move a step forward in achieving this goal. Reinforcement learning using a delayed reward mechanism is an approach to machine intelligence which studies decision making with control and how a decision making agent can learn to act optimally in an environment-unaware conditions. Q-learning is one of the model-free reinforcement directed learning strategies which uses temporal differences to estimate the performances of state-action pairs called Q values. A simple implementation of Q-learning algorithm can be …

Contributors
Gankidi, Pranay Reddy, Thangavelautham, Jekanthan, Ren, Fengbo, et al.
Created Date
2016

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory …

Contributors
Ma, Yufei, Vrudhula, Sarma, Seo, Jae-sun, et al.
Created Date
2018

Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks such as pharmacovigilance via the use of Natural Language Processing (NLP) techniques. One of the critical steps in information extraction pipelines is Named Entity Recognition (NER), where the mentions of entities such as diseases are located in text and their entity type are identified. However, the language in social media is highly informal, and user-expressed health-related concepts are often non-technical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and advanced …

Contributors
Nikfarjam, Azadeh, Gonzalez, Graciela, Greenes, Robert, et al.
Created Date
2016

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing …

Contributors
Narayanan, Vignesh, Kambhampati, Subbarao, Zhang, Yu, et al.
Created Date
2015

Type 1 diabetes (T1D) is a chronic disease that affects 1.25 million people in the United States. There is no known cure and patients must self-manage the disease to avoid complications resulting from blood glucose (BG) excursions. Patients are more likely to adhere to treatments when they incorporate lifestyle preferences. Current technologies that assist patients fail to consider two factors that are known to affect BG: exercise and alcohol. The hypothesis is postprandial blood glucose levels of adult patients with T1D can be improved by providing insulin bolus or carbohydrate recommendations that account for meal and alcohol carbohydrates, glycemic excursion, …

Contributors
Groat, Danielle, Grando, Maria Adela, Kaufman, David, et al.
Created Date
2017

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP). In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on …

Contributors
Molina, Daniel Antonio, Srivastava, Siddharth, Li, Baoxin, et al.
Created Date
2019